人教版八年級數(shù)學(xué)上冊知識點(diǎn)
在日常的學(xué)習(xí)中,大家都背過不少知識點(diǎn),肯定對知識點(diǎn)非常熟悉吧!知識點(diǎn)就是學(xué)習(xí)的重點(diǎn)。掌握知識點(diǎn)有助于大家更好的學(xué)習(xí)。下面是小編幫大家整理的人教版八年級數(shù)學(xué)上冊知識點(diǎn),僅供參考,希望能夠幫助到大家。
八年級數(shù)學(xué)上冊知識點(diǎn) 1
全等三角形知識點(diǎn)
1、全等圖形:能夠完全重合的兩個圖形就是全等圖形。
2、全等圖形的性質(zhì):全等多邊形的對應(yīng)邊、對應(yīng)角分別相等。
3、全等三角形:三角形是特殊的多邊形,因此,全等三角形的對應(yīng)邊、對應(yīng)角分別相等。同樣,如果兩個三角形的邊、角分別對應(yīng)相等,那么這兩個三角形全等。
說明:
全等三角形對應(yīng)邊上的高,中線相等,對應(yīng)角的平分線相等;全等三角形的周長,面積也都相等。
這里要注意:
(1)周長相等的兩個三角形,不一定全等;
。2)面積相等的兩個三角形,也不一定全等。
小練習(xí)
1、下列說法中正確的說法為()
、偃葓D形的形狀相同、大小相等;②全等三角形的對應(yīng)邊相等;③全等三角形的對應(yīng)角相等;④全等三角形的周長、面積分別相等,
A、①②③④B、①③④C、①②④D、②③④
2、一個正方形的側(cè)面展開圖有()個全等的正方形
A、2個B、3個C、4個D、6個
3、對于兩個圖形,給出下列結(jié)論,其中能獲得這兩個圖形全等的結(jié)論共有()
、賰蓚圖形的周長相等;②兩個圖形的面積相等;③兩個圖形的周長和面積都相等;④兩個圖形的形狀相同,大小也相等、
A、1個B、2個C、3個D、4個
三角形全等的判定知識點(diǎn)
1、三角形全等的判定公理及推論有:
(1)“邊角邊”簡稱“SAS”,兩邊和它們的夾角對應(yīng)相等的兩個三角形全等(“邊角邊”或“SAS”)。
。2)“角邊角”簡稱“ASA”,兩個角和它們的夾邊分別對應(yīng)相等的兩個三角形全等(“角邊角”或“ASA”)。
。3)“邊邊邊”簡稱“SSS”,三邊對應(yīng)相等的兩個三角形全等(“邊邊邊”或“SSS”)。
。4)“角角邊”簡稱“AAS”,有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等(“角角邊”或“AAS”)。
2、直角三角形全等的判定
利用一般三角形全等的'判定都能證明直角三角形全等、
斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等(“斜邊、直角邊”或“HL”)、
注意:兩邊一對角(SSA)和三角(AAA)對應(yīng)相等的兩個三角形不一定全等。
小練習(xí)
1、已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可補(bǔ)充的條件是______
核心考點(diǎn):全等三角形的判定
2、王師傅在做完門框后,常常在門框上斜釘兩根木條,這樣做的數(shù)學(xué)原理是______
核心考點(diǎn):三角形的穩(wěn)定性
3、將兩根鋼條AA’、BB’的中點(diǎn)O連在一起,使AA’、BB’可以繞著點(diǎn)O自由旋轉(zhuǎn),就做成了一個測量工件,則A’B’的長等于內(nèi)槽寬AB,那么判定△OAB≌△OA’B’的理由是______
核心考點(diǎn):全等三角形的判定
角的平分線的性質(zhì)知識點(diǎn)
1、角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。
2、判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上。
3、證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:
、、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系),
、凇⒒仡櫲切闻卸,搞清我們還需要什么,
③、正確地書寫證明格式(順序和對應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題)
八年級數(shù)學(xué)上冊知識點(diǎn) 2
一、分式
※1、兩個整數(shù)不能整除時,出現(xiàn)了分?jǐn)?shù);類似地,當(dāng)兩個整式不能整除時,就出現(xiàn)了分式.
整式A除以整式B,可以表示成 的形式.如果除式B中含有字母,那么稱 為分式,對于任意一個分式,分母都不能為零.
※2、整式和分式統(tǒng)稱為有理式,即有:
※3、進(jìn)行分?jǐn)?shù)的化簡與運(yùn)算時,常要進(jìn)行約分和通分,其主要依據(jù)是分?jǐn)?shù)的基本性質(zhì):
分式的分子與分母都乘以(或除以)同一個不等于零的整式,分式的值不變.
※4、一個分式的分子、分母有公因式時,可以運(yùn)用分式的基本性質(zhì),把這個分式的分子、分母同時除以它的們的公因式,也就是把分子、分母的公因式約去,這叫做約分.
二、分式的乘除法
※1、分式乘以分式,用分子的積做積的分子,分母的積做積的分母;分式除以以分式,把除式的分子、分母顛倒位置后,與被除式相乘.
※2、分式乘方,把分子、分母分別乘方.
逆向運(yùn)用 ,當(dāng)n為整數(shù)時,仍然有 成立.
※3、分子與分母沒有公因式的分式,叫做最簡分式.
三、分式的加減法
※1、分式與分?jǐn)?shù)類似,也可以通分.根據(jù)分式的基本性質(zhì),把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
※2、分式的加減法:
分式的加減法與分?jǐn)?shù)的加減法一樣,分為同分母的分式相加減與異分母的分式相加減.
(1)同分母的分式相加減,分母不變,把分子相加減;
上述法則用式子表示是:
(2)異號分母的分式相加減,先通分,變?yōu)橥帜傅姆质剑缓笤偌訙p;
上述法則用式子表示是:
※3、概念內(nèi)涵:
通分的關(guān)鍵是確定最簡分母,其方法如下:最簡公分母的系數(shù),取各分母系數(shù)的最小公倍數(shù);最簡公分母的`字母,取各分母所有字母的次冪的積,如果分母是多項(xiàng)式,則首先對多項(xiàng)式進(jìn)行因式分解.
四、分式方程
※1、解分式方程的一般步驟:
、僭诜匠痰膬蛇叾汲俗詈喒帜福s去分母,化成整式方程;
、诮膺@個整式方程;
③把整式方程的根代入最簡公分母,看結(jié)果是不是零,使最簡公母為零的根是原方程的增根,必須舍去.
※2、列分式方程解應(yīng)用題的一般步驟:
、賹徢孱}意;
、谠O(shè)未知數(shù);
、鄹鶕(jù)題意找相等關(guān)系,列出(分式)方程;
、芙夥匠,并驗(yàn)根;
、輰懗龃鸢.
數(shù)學(xué)解題方法與技巧
填空題答題技巧
要求熟記的基本概念、基本事實(shí)、數(shù)據(jù)公式、原理,復(fù)習(xí)時要特別細(xì)心,注意記熟,做到臨考前能準(zhǔn)確無誤、清晰回憶。
對那些起關(guān)鍵作用的,或最容易混淆記錯的概念、符號或圖形要特別注意,因?yàn)榭疾榈耐褪撬鼈。如區(qū)間的端點(diǎn)開還是閉、定義域和值域要用區(qū)間或集合表示、單調(diào)區(qū)間誤寫成不等式或把兩個單調(diào)區(qū)間取了并集等等。
解答題答題技巧
(1)仔細(xì)審題。注意題目中的關(guān)鍵詞,準(zhǔn)確理解考題要求。
(2)規(guī)范表述。分清層次,要注意計(jì)算的準(zhǔn)確性和簡約性、邏輯的條理性和連貫性。
(3)給出結(jié)論。注意分類討論的問題,最后要?dú)w納結(jié)論。
(4)講求效率。合理有序的書寫試卷和使用草稿紙,節(jié)省驗(yàn)算時間。
初中數(shù)學(xué)有理數(shù)的運(yùn)算知識點(diǎn)
加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。③一個數(shù)與0相加不變。
減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號得正,異號得負(fù),絕對值相乘。②任何數(shù)與0相乘得0。③乘積為1的兩個有理數(shù)互為倒數(shù)。
除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。②0不能作除數(shù)。
乘方:求N個相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
八年級數(shù)學(xué)上冊知識點(diǎn) 3
一、平面直角坐標(biāo)系:
在平面內(nèi)有公共原點(diǎn)而且互相垂直的兩條數(shù)軸,構(gòu)成了平面直角坐標(biāo)系。
二、知識點(diǎn)與題型總結(jié):
1、由點(diǎn)找坐標(biāo):
A點(diǎn)的坐標(biāo)記作A( 2,1 ),規(guī)定:橫坐標(biāo)在前,縱坐標(biāo)在后。
2、由坐標(biāo)找點(diǎn):例找點(diǎn)B( 3,-2 ) ?
由坐標(biāo)找點(diǎn)的方法:先找到表示橫坐標(biāo)與縱坐標(biāo)的點(diǎn),然后過這兩點(diǎn)分別作x軸與y軸的垂線,垂線的交點(diǎn)就是該坐標(biāo)對應(yīng)的點(diǎn)。
各象限點(diǎn)坐標(biāo)的符號:
①若點(diǎn)P(x,y)在第一象限,則x > 0,y > 0 ;
、谌酎c(diǎn)P(x,y)在第二象限,則x < 0,y > 0 ;
、廴酎c(diǎn)P(x,y)在第三象限,則x < 0,y < 0 ;
、苋酎c(diǎn)P(x,y)在第四象限,則x > 0,y < 0 。
典型例題:
例1、點(diǎn)P的坐標(biāo)是(2,-3),則點(diǎn)P在第四象限。
例2、若點(diǎn)P(x,y)的坐標(biāo)滿足xy>0,則點(diǎn)P在第一或三象限。
例3、若點(diǎn)A的坐標(biāo)為(a^2+1, -2–b^2) ,則點(diǎn)A在第四象限。
4、坐標(biāo)軸上點(diǎn)的坐標(biāo)符號:
坐標(biāo)軸上的點(diǎn)不屬于任何象限。
、 x軸上的點(diǎn)的縱坐標(biāo)為0,表示為(x,0),
、 y軸上的點(diǎn)的橫坐標(biāo)為0,表示為(0,y),
③原點(diǎn)(0,0)既在x軸上,又在y軸上。
例4、點(diǎn)P(x,y )滿足xy = 0,則點(diǎn)P在x軸上或y軸上。 .
5、與坐標(biāo)軸平行的兩點(diǎn)連線:
、偃鬉B‖ x軸,則A、B的縱坐標(biāo)相同;
②若AB‖ y軸,則A、B的橫坐標(biāo)相同。
例5、已知點(diǎn)A(10,5),B(50,5),則直線AB的位置特點(diǎn)是(A )
A、與x軸平行B、與y軸平行C、與x軸相交,但不垂直D、與y軸相交,但不垂直
6、象限角平分線上的點(diǎn):
、偃酎c(diǎn)P在第一、三象限角的平分線上,則P( m, m );
②若點(diǎn)P在第二、四象限角的平分線上,則P( m, -m )。
例6、已知點(diǎn)A(2a+1,2+a)在第二象限的平分線上,試求A的坐標(biāo)。
解:由條件可知:2a+1 +(2+a)=0,解得a = -1,
∴ A(-1,1)。
例7、已知點(diǎn)M(a+1,3a-5)在兩坐標(biāo)軸夾角的平分線上,試求M的坐標(biāo)。
解:當(dāng)在一、三象限角平分線上時,a+1=3a-5,
解得:a=3 ∴ M(4,4)
當(dāng)在二、四象限角平分線上時,a+1+(3a-5 )=0,
解得:a=1 ∴ M(2,-2)
∴M的坐標(biāo)為(4,4)或(2,-2)
7、關(guān)于坐標(biāo)軸、原點(diǎn)的對稱點(diǎn):
、冱c(diǎn)(a, b )關(guān)于X軸的對稱點(diǎn)是(a , -b );
、邳c(diǎn)(a, b )關(guān)于Y軸的對稱點(diǎn)是( -a , b );
③點(diǎn)(a, b )關(guān)于原點(diǎn)的對稱點(diǎn)是( -a , -b )。
例8、已知點(diǎn)A(3a-1,1+a)在第一象限的平分線上,試求A關(guān)于原點(diǎn)的對稱點(diǎn)的坐標(biāo)。
解:由條件得:3a-1=1+a解得:a=1,∴ A(2,2),
∴ A關(guān)于原點(diǎn)的對稱點(diǎn)的坐標(biāo)為(-2,-2)。
8、點(diǎn)到坐標(biāo)軸的距離:
、冱c(diǎn)( x, y )到x軸的距離是∣y∣;
②點(diǎn)( x, y )到x軸的距離是∣x∣。
例9、點(diǎn)P到x軸、y軸的距離分別是2,1,則點(diǎn)P的`坐標(biāo)可能為?
答案:(1,2)、(1,-2)、(-1,2)、(-1,-2) 。
三、知識拓展與提高:
例10、在平面直角坐標(biāo)系中,已知兩點(diǎn)A(0,1),B(8,5),點(diǎn)P在x軸上,則PA + PB的最小值是多少?
解:作點(diǎn)A(0,1)關(guān)于x軸的對稱點(diǎn)A(0,-1),連接AB與x軸交于點(diǎn)P,
則AB路徑最短,即PA + PB最小。
根據(jù)勾股定理得:AB = √[(1+5)^2 + 8^2] = 10 。
∴PA + PB的最小值是10 。
如何學(xué)好初中數(shù)學(xué)的方法
多做練習(xí)題
要想學(xué)好初中數(shù)學(xué),必須多做練習(xí),我們所說的“多做練習(xí)”,不是搞“題海戰(zhàn)術(shù)”。只做不思,不能起到鞏固概念,拓寬思路的作用,而且有“副作用”:把已學(xué)過的知識攪得一塌糊涂,理不出頭緒,浪費(fèi)時間又收獲不大,我們所說的“多做練習(xí)”,是要大家在做了一道新穎的題目之后,多想一想:它究竟用到了哪些知識,是否可以多解,其結(jié)論是否還可以加強(qiáng)、推廣等等。
課后總結(jié)和反思
在進(jìn)行單元小結(jié)或?qū)W期總結(jié)時,要做到以下幾點(diǎn):一看:看書、看筆記、看習(xí)題,通過看,回憶、熟悉所學(xué)內(nèi)容;二列:列出相關(guān)的知識點(diǎn),標(biāo)出重點(diǎn)、難點(diǎn),列出各知識點(diǎn)之間的關(guān)系,這相當(dāng)于寫出總結(jié)要點(diǎn);三做:在此基礎(chǔ)上有目的、有重點(diǎn)、有選擇地解一些各種檔次、類型的習(xí)題,通過解題再反饋,發(fā)現(xiàn)問題、解決問題。
初中數(shù)學(xué)有理數(shù)知識點(diǎn)
1、有理數(shù)的加法運(yùn)算
同號兩數(shù)來相加,絕對值加不變號。
異號相加大減小,大數(shù)決定和符號。
互為相反數(shù)求和,結(jié)果是零須記好。
“大”減“小”是指絕對值的大小。
2、有理數(shù)的減法運(yùn)算
減正等于加負(fù),減負(fù)等于加正。
有理數(shù)的乘法運(yùn)算符號法則。
同號得正異號負(fù),一項(xiàng)為零積是零。
3、有理數(shù)混合運(yùn)算的四種運(yùn)算技巧
轉(zhuǎn)化法:一是將除法轉(zhuǎn)化為乘法,二是將乘方轉(zhuǎn)化為乘法,三是在乘除混合運(yùn)算中,通常將小數(shù)轉(zhuǎn)化為分?jǐn)?shù)進(jìn)行約分計(jì)算。
湊整法:在加減混合運(yùn)算中,通常將和為零的兩個數(shù),分母相同的兩個數(shù),和為整數(shù)的兩個數(shù),乘積為整數(shù)的兩個數(shù)分別結(jié)合為一組求解。
分拆法:先將帶分?jǐn)?shù)分拆成一個整數(shù)與一個真分?jǐn)?shù)的和的形式,然后進(jìn)行計(jì)算。
巧用運(yùn)算律:在計(jì)算中巧妙運(yùn)用加法運(yùn)算律或乘法運(yùn)算律往往使計(jì)算更簡便。
八年級數(shù)學(xué)上冊知識點(diǎn) 4
一般地,如果一個正數(shù)x的平方等于a,那么這個正數(shù)x就叫做a的算術(shù)平方根。
特別地,我們規(guī)定0的算術(shù)平方根是0。
一般地,如果一個數(shù)x的平方等于a,那么這個數(shù)x就叫做a的平方根(也叫二次方根)
一個正數(shù)有兩個平方根;0只有一個平方根,它是0本身;負(fù)數(shù)沒有平方根。
求一個數(shù)a的平方根的運(yùn)算,叫做開平方,其中a叫做被開方數(shù)。
一般地,如果一個數(shù)x的立方等于a,那么這個數(shù)x就叫做a的立方根(也叫做三次方根)。
正數(shù)的.立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。
求一個數(shù)a的立方根的運(yùn)算,叫做開立方,其中a叫做被開方數(shù)。
有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù),即實(shí)數(shù)可以分為有理數(shù)和無理數(shù)。
每一個實(shí)數(shù)都可以用數(shù)軸上的一個點(diǎn)來表示;反過來,數(shù)軸上的每一個點(diǎn)都表示一個實(shí)數(shù)。即實(shí)數(shù)和數(shù)軸上的點(diǎn)是一一對應(yīng)的。
在數(shù)軸上,右邊的點(diǎn)表示的數(shù)比左邊的點(diǎn)表示的數(shù)大。
實(shí)數(shù)知識點(diǎn)
平方根:
、偃绻粋正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。
、谌绻粋數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。
、垡粋正數(shù)有2個平方根/0的平方根為0/負(fù)數(shù)沒有平方根。
、芮笠粋數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。
立方根:
、偃绻粋數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。
、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。
③求一個數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。
實(shí)數(shù):
①實(shí)數(shù)分有理數(shù)和無理數(shù)。
②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。
③每一個實(shí)數(shù)都可以在數(shù)軸上的一個點(diǎn)來表示。
八年級數(shù)學(xué)上冊知識點(diǎn) 5
一、勾股定理
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。
我國古代把直角三角形中,較短的直角邊叫做“勾”,較長的直角邊叫做“股”,斜邊叫做“弦”。結(jié)論為:“勾三股四弦五”。
a2+b2=c2
2221、如果三角形的三邊長a、b、c滿足a+b=c,那么這個三角形是直角三角形。
2222、滿足a+b=c的3個正整數(shù)a、b、c稱為勾股數(shù)。(例如,3、4、5是一組勾股
數(shù))。利用勾股數(shù)可以構(gòu)造直角三角形。
二、平方根
1、定義——一般地,如果一個數(shù)的平方等于a,那么這個數(shù)叫做a的平方根,也稱為二次方根。也就是說,如果x2=a,那么x就叫做a的平方根。
2、一個正數(shù)有2個平方根,它們互為相反數(shù);0只有一個平方根,它是0本身;負(fù)數(shù)沒有平方根。
3、求一個數(shù)a的平方根的運(yùn)算,叫做開平方。
4、正數(shù)a有兩個平方根,其中正的平方根,也叫做a的算術(shù)平方根。
例如:4的平方根是±2,其中2叫做4的算術(shù)平方根,記作=2;2的平方根是±其中2的算術(shù)平方根。
0只有一個平方根,0的平方根也叫做0的算術(shù)平方根,即
三、立方根
1、定義——一般地,如果一個數(shù)的立方等于a,那么這個數(shù)叫做a的立方根,也稱為三次方根。也就是說,如果x=a,那么x就叫做a的立方根,數(shù)a的立方根記作“,讀作“三次根號a”。
2、求一個數(shù)a的立方根的運(yùn)算,叫做開立方。
3、正數(shù)的立方根是正數(shù),負(fù)數(shù)的立方根是負(fù)數(shù),0的立方根是0。
四、實(shí)數(shù)
1、無限不循環(huán)小數(shù)稱為無理數(shù)。
2、有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù)。
3、每一個實(shí)數(shù)都可以用數(shù)軸上的一個點(diǎn)來表示,反之,數(shù)軸上的每一個點(diǎn)都表示一個實(shí)數(shù),實(shí)數(shù)與數(shù)軸上的.點(diǎn)是一一對應(yīng)的。
五、近似數(shù)與有效數(shù)字
1、例如,本冊數(shù)學(xué)課本約有100千字,這里100是一個近似似數(shù)。
2、對一個近似數(shù),從左邊第一個不是0的數(shù)字起,到末位數(shù)字止,所有的數(shù)字都稱為這個近似數(shù)的有效數(shù)字。
怎么樣才能打好初二數(shù)學(xué)基礎(chǔ)
第一,重視初二數(shù)學(xué)公式。有很多同學(xué)數(shù)學(xué)學(xué)不好就是因?yàn)閷Ω拍詈凸讲粔蛑匾,具體的表現(xiàn)為對初二數(shù)學(xué)概念的理解只是停留在表明,不去挖掘引申的含義,對數(shù)學(xué)概念的特殊情況不明白。還有對數(shù)學(xué)概念和公式有的學(xué)生只是死記硬背,初二學(xué)生缺乏對概念的理解。
還有一部分初二同學(xué)不重視對數(shù)學(xué)公式的記憶。其實(shí)記憶是理解的基礎(chǔ)。我們設(shè)想如果你不能將數(shù)學(xué)公式爛熟于心,那么又怎么能夠在數(shù)學(xué)題目中熟練的應(yīng)用呢?
第二,就是總結(jié)那些相似的數(shù)學(xué)題目。當(dāng)我們養(yǎng)成了總結(jié)歸納的習(xí)慣,那么初二的學(xué)生就會知道自己在解決數(shù)學(xué)題目的時候哪些是自己比較擅長的,哪些是自己還不足的。
同時善于總結(jié)也會明白自己掌握哪些數(shù)學(xué)的解題方法,只有這樣你才能夠真正掌握了初二數(shù)學(xué)的解題技巧。其實(shí),做到總結(jié)和歸納是學(xué)會數(shù)學(xué)的關(guān)鍵,如果初二學(xué)生不會做到這一點(diǎn)那么久而久之,不會的數(shù)學(xué)題目還是不會。
集合的定義
集合是指具有某種特定性質(zhì)的具體的或抽象的對象匯總而成的集體。其中,構(gòu)成集合的這些對象則稱為該集合的元素。
例如,全中國人的集合,它的元素就是每一個中國人。通常用大寫字母如A,B,S,T……表示集合,而用小寫字母如a,b,x,y……表示集合的元素。若x是集合S的元素,則稱x屬于S,記為x∈S。若y不是集合S的元素,則稱y不屬于S,記為y?S。
八年級數(shù)學(xué)上冊知識點(diǎn) 6
1、平均數(shù)
①一般地,對于n個數(shù)x1x2...xn,我們把(x1+x2+···+xn)叫做這n個數(shù)的算數(shù)平均數(shù),簡稱平均數(shù)記為。
、谠趯(shí)際問題中,一組數(shù)據(jù)里的各個數(shù)據(jù)的“重要程度”未必相同,因而在計(jì)算,這組數(shù)據(jù)的平均數(shù)時,往往給每個數(shù)據(jù)一個權(quán),叫做加權(quán)平均數(shù)
2、中位數(shù)與眾數(shù)
、僦形粩(shù):一般地,n個數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)
、谝唤M數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)
、燮骄鶖(shù)、中位數(shù)和眾數(shù)都是描述數(shù)據(jù)集中趨勢的統(tǒng)計(jì)量
④計(jì)算平均數(shù)時,所有數(shù)據(jù)都參加運(yùn)算,它能充分地利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實(shí)生活中較為常用,但他容易受極端值影響。
、葜形粩(shù)的優(yōu)點(diǎn)是計(jì)算簡單,受極端值影響較小,但不能充分利用所有數(shù)據(jù)的信息
、薷鱾數(shù)據(jù)重復(fù)次數(shù)大致相等時,眾數(shù)往往沒有特別意義
3、從統(tǒng)計(jì)圖分析數(shù)據(jù)的集中趨勢
4、數(shù)據(jù)的離散程度
①實(shí)際生活中,除了關(guān)心數(shù)據(jù)的集中趨勢外,人們還關(guān)注數(shù)據(jù)的離散程度,即它們相對于集中趨勢的`偏離情況。一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,(稱為極差),就是刻畫數(shù)據(jù)離散程度的一個統(tǒng)計(jì)量
②數(shù)學(xué)上,數(shù)據(jù)的離散程度還可以用方差或標(biāo)準(zhǔn)差刻畫
數(shù)學(xué)的方法和技巧
狠抓“雙基”訓(xùn)練
“雙基”即基礎(chǔ)知識與基本技能;A(chǔ)知識是指數(shù)學(xué)概念、定理、法則、公式以及各種知識之間的內(nèi)在聯(lián)系;基本技能是一種較穩(wěn)定的心理因素,是一種已經(jīng)程式化了的動作,初中數(shù)學(xué)基本技能包括運(yùn)算技能、畫圖技能、運(yùn)用數(shù)字語言的技能、推理論證的技能等。只有扎實(shí)地掌握“雙基”,才能靈活應(yīng)用、深入探索,不斷創(chuàng)新。
解決疑難
這是指對獨(dú)立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點(diǎn)撥使思路暢通,補(bǔ)遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯的作業(yè)再做一遍。對錯誤的地方?jīng)]弄清楚要反復(fù)思考,實(shí)在解決不了的要請教老師和同學(xué),并經(jīng)常把容易錯的地方拿來復(fù)習(xí)強(qiáng)化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把從老師、同學(xué)處獲得的東西消化變成自己的知識,長期堅(jiān)持使對所學(xué)知識由“熟”到“活”。
初中數(shù)學(xué)二元一次方程組知識點(diǎn)
(一)定義:含有兩個未知數(shù),并且未知項(xiàng)的最高次數(shù)是1的整式方程叫做二元一次方程。
(二)二元一次方程組的解法
(1)代入法
由一個二次方程和一個一次方程所組成的方程組通常用代入法來解,這是基本的消元降次方法。
(2)因式分解法
在二元二次方程組中,至少有一個方程可以分解時,可采用因式分解法通過消元降次來解。
(3)配方法
將一個式子,或一個式子的某一部分通過恒等變形化為完全平方式或幾個完全平方式的和。
(4)韋達(dá)定理法
通過韋達(dá)定理的逆定理,可以利用兩數(shù)的和積關(guān)系構(gòu)造一元二次方程。
(5)消常數(shù)項(xiàng)法
當(dāng)方程組的兩個方程都缺一次項(xiàng)時,可用消去常數(shù)項(xiàng)的方法解。
③方差是各個數(shù)據(jù)與平均數(shù)差的平方的平均數(shù)
、芷渲惺莤1,x2.....xn平均數(shù),s2是方差,而標(biāo)準(zhǔn)差就是方差的算術(shù)平方根
、菀话愣,一組數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。
八年級數(shù)學(xué)上冊知識點(diǎn) 7
函數(shù)及其相關(guān)概念
1、變量與常量
在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù)。
2、函數(shù)解析式
用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)
(1)解析法
兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運(yùn)算符號的等式表示,這種表示法叫做解析法。
。2)列表法
把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
。3)圖像法
用圖像表示函數(shù)關(guān)系的方法叫做圖像法。
4、由函數(shù)解析式畫其圖像的一般步驟
。1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值
。2)描點(diǎn):以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)
。3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。
數(shù)據(jù)的收集、整理與描述
一、知識框架
二、知識概念
1、全面調(diào)查:考察全體對象的調(diào)查方式叫做全面調(diào)查、
2、抽樣調(diào)查:調(diào)查部分?jǐn)?shù)據(jù),根據(jù)部分來估計(jì)總體的調(diào)查方式稱為抽樣調(diào)查、
3、總體:要考察的全體對象稱為總體、
4、個體:組成總體的每一個考察對象稱為個體、
5、樣本:被抽取的所有個體組成一個樣本、
6、樣本容量:樣本中個體的數(shù)目稱為樣本容量、
7、頻數(shù):一般地,我們稱落在不同小組中的數(shù)據(jù)個數(shù)為該組的頻數(shù)、
8、頻率:頻數(shù)與數(shù)據(jù)總數(shù)的比為頻率、
9、組數(shù)和組距:在統(tǒng)計(jì)數(shù)據(jù)時,把數(shù)據(jù)按照一定的范圍分成若干各組,分成組的個數(shù)稱為組數(shù),每一組兩個端點(diǎn)的差叫做組距、
四邊形
平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
平行四邊形的性質(zhì):平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。
平行四邊形的判定
1、兩組對邊分別相等的四邊形是平行四邊形
2、對角線互相平分的四邊形是平行四邊形;
3、兩組對角分別相等的四邊形是平行四邊形;
4、一組對邊平行且相等的四邊形是平行四邊形。
三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。
直角三角形斜邊上的中線等于斜邊的一半。
矩形的定義:有一個角是直角的平行四邊形。
矩形的性質(zhì):矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD
矩形判定定理:
1、有一個角是直角的平行四邊形叫做矩形。
2、對角線相等的平行四邊形是矩形。
3、有三個角是直角的四邊形是矩形。
菱形的定義:鄰邊相等的平行四邊形。
菱形的性質(zhì):菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
菱形的判定定理:
1、一組鄰邊相等的平行四邊形是菱形。
2、對角線互相垂直的平行四邊形是菱形。
3、四條邊相等的四邊形是菱形。S菱形=1/2×ab(a、b為兩條對角線)
正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
正方形的性質(zhì):四條邊都相等,四個角都是直角。正方形既是矩形,又是菱形。
正方形判定定理:
1、鄰邊相等的矩形是正方形。
2、有一個角是直角的菱形是正方形。
梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
直角梯形的定義:有一個角是直角的梯形
等腰梯形的定義:兩腰相等的梯形。
等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
解梯形問題常用的輔助線:如圖
線段的重心就是線段的中點(diǎn)。平行四邊形的'重心是它的兩條對角線的交點(diǎn)。三角形的三條中線交于疑點(diǎn),這一點(diǎn)就是三角形的重心。寬和長的比是—1(約為0、618)的矩形叫做黃金矩形。
如何提高解答數(shù)學(xué)題的能力
數(shù)學(xué)的解答能力,主要通過實(shí)際的練習(xí)來提高。數(shù)學(xué)練習(xí)應(yīng)注意以下幾點(diǎn):
。1)、端正態(tài)度,充分認(rèn)識到數(shù)學(xué)練習(xí)的重要性。實(shí)際練習(xí)不僅可以提高解答速度,掌握解答技能技巧,而且,許多的新問題常在練習(xí)中出現(xiàn)。
。2)、要有自信心與意志力。數(shù)學(xué)練習(xí)常有繁雜的計(jì)算,深奧的證明,自己應(yīng)有充足的信心,頑強(qiáng)的意志,耐心細(xì)致的習(xí)慣。
。3)、要養(yǎng)成先思考,后解答,再檢查的良好習(xí)慣,遇到一個題,不能盲目地進(jìn)行練習(xí),無效計(jì)算,應(yīng)先深入領(lǐng)會題意,認(rèn)真思考,抓住關(guān)鍵,再作解答。解答后,還應(yīng)進(jìn)行檢查。
多項(xiàng)式定義
在數(shù)學(xué)中,多項(xiàng)式是指由變量、系數(shù)以及它們之間的加、減、乘、冪運(yùn)算(非負(fù)整數(shù)次方)得到的表達(dá)式。
對于比較廣義的定義,1個或0個單項(xiàng)式的和也算多項(xiàng)式。按這個定義,多項(xiàng)式就是整式。實(shí)際上,還沒有一個只對狹義多項(xiàng)式起作用,對單項(xiàng)式不起作用的定理。0作為多項(xiàng)式時,次數(shù)定義為負(fù)無窮大(或0)。單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。
八年級數(shù)學(xué)上冊知識點(diǎn) 8
1、實(shí)數(shù)的概念及分類
、賹(shí)數(shù)的分類
、跓o理數(shù)
無限不循環(huán)小數(shù)叫做無理數(shù)。
在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:
開方開不盡的數(shù),如 √7 ,3 √2等;
有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如π /?+8等;
有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;
某些三角函數(shù)值,如sin60°等
2、實(shí)數(shù)的倒數(shù)、相反數(shù)和絕對值
、傧喾磾(shù)
實(shí)數(shù)與它的相反數(shù)是一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應(yīng)的點(diǎn)關(guān)于原點(diǎn)對稱,如果a與b互為相反數(shù),則有a+b=0,a=-b,反之亦成立。
、诮^對值
在數(shù)軸上,一個數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對值。|a|≥0。0的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。
、鄣箶(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。0沒有倒數(shù)。
④數(shù)軸
規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。
解題時要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對應(yīng)的,并能靈活運(yùn)用。
、莨浪
3、平方根、算數(shù)平方根和立方根
、偎阈g(shù)平方根
一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x就叫做a的算術(shù)平方根。特別地,0的算術(shù)平方根是0。
性質(zhì):正數(shù)和零的算術(shù)平方根都只有一個,0的算術(shù)平方根是0。
、谄椒礁
一般地,如果一個數(shù)x的平方等于a,即x2=a,那么這個數(shù)x就叫做a的平方根(或二次方根)。
性質(zhì):一個正數(shù)有兩個平方根,它們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒有平方根。
開平方求一個數(shù)a的平方根的運(yùn)算,叫做開平方。注意 √a的雙重非負(fù)性:√a≥0 ; a≥0
③立方根
一般地,如果一個數(shù)x的立方等于a,即x3=a,那么這個數(shù)x就叫做a 的'立方根(或三次方根)。
表示方法:記作 3 √a
性質(zhì):一個正數(shù)有一個正的立方根;一個負(fù)數(shù)有一個負(fù)的立方根;零的立方根是零。
注意:- 3 √a=3 √-a,這說明三次根號內(nèi)的負(fù)號可以移到根號外面。
4、實(shí)數(shù)大小的比較
、賹(shí)數(shù)比較大小
正數(shù)大于零,負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù);
數(shù)軸上的兩個點(diǎn)所表示的數(shù),右邊的總比左邊的大;
兩個負(fù)數(shù),絕對值大的反而小。
、趯(shí)數(shù)大小比較的幾種常用方法
數(shù)軸比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。
求差比較:設(shè)a、b是實(shí)數(shù) a-b>0a>b; a-b=0a=b; a-b<0a<b 。
求商比較法:設(shè)a、b是兩正實(shí)數(shù),
絕對值比較法:設(shè)a、b是兩負(fù)實(shí)數(shù),則∣a∣>∣b∣a<b。
平方法:設(shè)a、b是兩負(fù)實(shí)數(shù),則 a2>b2a<b 。
5、算術(shù)平方根有關(guān)計(jì)算(二次根式)
、俸卸胃枴 √ ”;被開方數(shù)a必須是非負(fù)數(shù)。
、谛再|(zhì):
、圻\(yùn)算結(jié)果若含有“ √ ”形式,必須滿足:
被開方數(shù)的因數(shù)是整數(shù),因式是整式
被開方數(shù)中不含能開得盡方的因數(shù)或因式
6、實(shí)數(shù)的運(yùn)算
、倭N運(yùn)算:加、減、乘、除、乘方 、開方。
②實(shí)數(shù)的運(yùn)算順序
先算乘方和開方,再算乘除,最后算加減,如果有括號,就先算括號里面的。
③運(yùn)算律
加法交換律 a+b= b+a
加法結(jié)合律 (a+b)+c= a+( b+c )
乘法交換律 ab= ba
乘法結(jié)合律 (ab)c = a( bc )
乘法對加法的分配律 a( b+c )=ab+ac
【八年級數(shù)學(xué)上冊知識點(diǎn)】相關(guān)文章:
數(shù)學(xué)八年級上冊知識點(diǎn)12-07
數(shù)學(xué)八年級上冊十三章知識點(diǎn)11-17
八年級上冊人教版數(shù)學(xué)知識點(diǎn)03-19
數(shù)學(xué)八年級上冊知識點(diǎn)15篇01-23
八年級上冊重要的數(shù)學(xué)知識點(diǎn)12-02
八年級上冊數(shù)學(xué)知識點(diǎn)03-15
八年級上冊數(shù)學(xué)實(shí)數(shù)知識點(diǎn)歸納01-19
八年級數(shù)學(xué)上冊分式知識點(diǎn)01-18