人教版八年級數(shù)學上冊知識點總結
在日常過程學習中,大家最熟悉的就是知識點吧?知識點也不一定都是文字,數(shù)學的知識點除了定義,同樣重要的公式也可以理解為知識點。想要一份整理好的知識點嗎?以下是小編收集整理的人教版八年級數(shù)學上冊知識點總結大全,僅供參考,希望能夠幫助到大家。
八年級數(shù)學上冊知識點總結 1
多邊形
1、多邊形的概念:
在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。組成多邊形的各條線段叫做多邊形的邊;每相鄰兩條邊的公共端點叫做多邊形的頂點;多邊形相鄰兩邊組成的角叫多邊形的內角,一個n邊形有n個內角;多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角。在定義中應注意:
、僖恍┚段(多邊形的邊數(shù)是大于等于3的正整數(shù));
、谑孜岔槾蜗噙B,二者缺一不可;
、劾斫鈺r要特別注意“在同一平面內”這個條件,其目的是為了排除幾個點不共面的情況,即空間多邊形。
2、多邊形的分類:
多邊形可分為凸多邊形和凹多邊形,畫出多邊形的任何一條邊所在的直線,如果整個多邊形都在這條直線的同一側,則此多邊形為凸多邊形,反之為凹多邊形。
凸多邊形 凹多邊形 各個角都相等、各個邊都相等的多邊形叫做正多邊形。
3、多邊形的對角線:
連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
(1)從n邊形一個頂點可以引(n-3)條對角線,將多邊形分成(n-2)個三角形。
(2)n邊形共有條對角線。
4、多邊形的內角和外角
(1)多邊形的內角和公式:n邊形的內角和為(n-2)×180°
(2)多邊形的外角和等于360°,它與邊數(shù)的多少無關。
推論:
(1)內角和與邊數(shù)成正比:邊數(shù)增加,內角和增加;邊數(shù)減少,內角和減少。每增加一條邊,內角的和就增加180°(反過來也成立),且多邊形的內角和必須是180°的整數(shù)倍。
(2)多邊形最多有三個內角為銳角,最少沒有銳角(如矩形);多邊形的外角中最多有三個鈍角,最少沒有鈍角。
八年級數(shù)學上冊知識點總結 2
(一)運用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
1、平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語言:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。這個公式就是平方差公式。
(三)因式分解
1、因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2、因式分解,必須進行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
、夙棓(shù):三項
、谟袃身検莾蓚數(shù)的的平方和,這兩項的符號相同。
、塾幸豁検沁@兩個數(shù)的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
八年級數(shù)學上冊知識點總結 3
分數(shù)的加減法
1、通分與約分雖都是針對分式而言,但卻是兩種相反的變形。約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來、
2、通分和約分都是依據(jù)分式的基本性質進行變形,其共同點是保持分式的值不變。
3、一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備。
4、通分的依據(jù):分式的基本性質。
5、通分的關鍵:確定幾個分式的公分母。
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母。
6、類比分數(shù)的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分。
7、同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。
8、異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质,然后再加減。
9、同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括號。
10、對于整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分。
11、異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運算簡化。
12、作為最后結果,如果是分式則應該是最簡分式。
八年級數(shù)學上冊知識點總結 4
中線
1、等腰三角形底邊上的中線垂直底邊,平分頂角;
2、等腰三角形兩腰上的中線相等,并且它們的交點與底邊兩端點距離相等。
1、兩邊上中線相等的三角形是等腰三角形;
2、如果一個三角形的一邊中線垂直這條邊(平分這個邊的對角),那么這個三角形是等腰三角形
角平分線
1、等腰三角形頂角平分線垂直平分底邊;
2、等腰三角形兩底角平分線相等,并且它們的交點到底邊兩端點的距離相等。
1、如果三角形的頂角平分線垂直于這個角的對邊(平分對邊),那么這個三角形是等腰三角形;
2、三角形中兩個角的平分線相等,那么這個三角形是等腰三角形。
高線
1、等腰三角形底邊上的高平分頂角、平分底邊;
2、等腰三角形兩腰上的高相等,并且它們的交點和底邊兩端點距離相等。
1、如果一個三角形一邊上的高平分這條邊(平分這條邊的對角),那么這個三角形是等腰三角形;
2、有兩條高相等的三角形是等腰三角形。
八年級數(shù)學上冊知識點總結 5
四邊形的相關概念
1、四邊形
在同一平面內,由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。
2、四邊形具有不穩(wěn)定性
3、四邊形的內角和定理及外角和定理
四邊形的內角和定理:四邊形的內角和等于360°。
四邊形的外角和定理:四邊形的外角和等于360°。
推論:多邊形的內角和定理:n邊形的內角和等于(n?2)?180°;
多邊形的外角和定理:任意多邊形的外角和等于360°。
6、設多邊形的邊數(shù)為n,則多邊形的對角線共有n(n?3)條。從n邊形的一個頂點出2發(fā)能引(n-3)條對角線,將n邊形分成(n-2)個三角形。
八年級數(shù)學上冊知識點總結 6
一、平面直角坐標系:
在平面內有公共原點而且互相垂直的兩條數(shù)軸,構成了平面直角坐標系。
二、知識點與題型總結:
1、由點找坐標:
A點的坐標記作A( 2,1 ),規(guī)定:橫坐標在前,縱坐標在后。
2、由坐標找點:例找點B( 3,-2 ) ?
由坐標找點的方法:先找到表示橫坐標與縱坐標的點,然后過這兩點分別作x軸與y軸的垂線,垂線的交點就是該坐標對應的點。
各象限點坐標的符號:
、偃酎cP(x,y)在第一象限,則x > 0,y > 0 ;
②若點P(x,y)在第二象限,則x < 0,y > 0 ;
、廴酎cP(x,y)在第三象限,則x < 0,y < 0 ;
④若點P(x,y)在第四象限,則x > 0,y < 0 。
典型例題:
例1、點P的坐標是(2,-3),則點P在第四象限。
例2、若點P(x,y)的坐標滿足xy>0,則點P在第一或三象限。
例3、若點A的坐標為(a^2+1, -2–b^2) ,則點A在第四象限。
4、坐標軸上點的坐標符號:
坐標軸上的點不屬于任何象限。
① x軸上的點的縱坐標為0,表示為(x,0),
、 y軸上的點的橫坐標為0,表示為(0,y),
、墼c(0,0)既在x軸上,又在y軸上。
例4、點P(x,y )滿足xy = 0,則點P在x軸上或y軸上。
5、與坐標軸平行的兩點連線:
、偃鬉B‖ x軸,則A、B的縱坐標相同;
、谌鬉B‖ y軸,則A、B的橫坐標相同。
例5、已知點A(10,5),B(50,5),則直線AB的位置特點是(A )
A、與x軸平行B、與y軸平行C、與x軸相交,但不垂直D、與y軸相交,但不垂直
6、象限角平分線上的點:
、偃酎cP在第一、三象限角的平分線上,則P( m, m );
、谌酎cP在第二、四象限角的平分線上,則P( m, -m )。
例6、已知點A(2a+1,2+a)在第二象限的平分線上,試求A的坐標。
解:由條件可知:2a+1 +(2+a)=0,解得a = -1,
∴ A(-1,1)。
例7、已知點M(a+1,3a-5)在兩坐標軸夾角的平分線上,試求M的坐標。
解:當在一、三象限角平分線上時,a+1=3a-5,
解得:a=3 ∴ M(4,4)
當在二、四象限角平分線上時,a+1+(3a-5 )=0,
解得:a=1 ∴ M(2,-2)
∴M的坐標為(4,4)或(2,-2)
7、關于坐標軸、原點的對稱點:
、冱c(a, b )關于X軸的對稱點是(a , -b );
、邳c(a, b )關于Y軸的對稱點是( -a , b );
、埸c(a, b )關于原點的對稱點是( -a , -b )。
例8、已知點A(3a-1,1+a)在第一象限的平分線上,試求A關于原點的對稱點的坐標。
解:由條件得:3a-1=1+a解得:a=1,∴ A(2,2),
∴ A關于原點的對稱點的坐標為(-2,-2)。
8、點到坐標軸的距離:
①點( x, y )到x軸的距離是∣y∣;
、邳c( x, y )到x軸的距離是∣x∣。
例9、點P到x軸、y軸的距離分別是2,1,則點P的坐標可能為?
答案:(1,2)、(1,-2)、(-1,2)、(-1,-2) 。
三、知識拓展與提高:
例10、在平面直角坐標系中,已知兩點A(0,1),B(8,5),點P在x軸上,則PA + PB的最小值是多少?
解:作點A(0,1)關于x軸的對稱點A(0,-1),連接AB與x軸交于點P,
則AB路徑最短,即PA + PB最小。
根據(jù)勾股定理得:AB = √[(1+5)^2 + 8^2] = 10 。
∴PA + PB的最小值是10 。
如何學好初中數(shù)學的方法
多做練習題
要想學好初中數(shù)學,必須多做練習,我們所說的“多做練習”,不是搞“題海戰(zhàn)術”。只做不思,不能起到鞏固概念,拓寬思路的作用,而且有“副作用”:把已學過的知識攪得一塌糊涂,理不出頭緒,浪費時間又收獲不大,我們所說的“多做練習”,是要大家在做了一道新穎的題目之后,多想一想:它究竟用到了哪些知識,是否可以多解,其結論是否還可以加強、推廣等等。
課后總結和反思
在進行單元小結或學期總結時,要做到以下幾點:一看:看書、看筆記、看習題,通過看,回憶、熟悉所學內容;二列:列出相關的知識點,標出重點、難點,列出各知識點之間的關系,這相當于寫出總結要點;三做:在此基礎上有目的、有重點、有選擇地解一些各種檔次、類型的習題,通過解題再反饋,發(fā)現(xiàn)問題、解決問題。
初中數(shù)學有理數(shù)知識點
1、有理數(shù)的加法運算
同號兩數(shù)來相加,絕對值加不變號。
異號相加大減小,大數(shù)決定和符號。
互為相反數(shù)求和,結果是零須記好。
“大”減“小”是指絕對值的大小。
2、有理數(shù)的減法運算
減正等于加負,減負等于加正。
有理數(shù)的乘法運算符號法則。
同號得正異號負,一項為零積是零。
3、有理數(shù)混合運算的四種運算技巧
轉化法:一是將除法轉化為乘法,二是將乘方轉化為乘法,三是在乘除混合運算中,通常將小數(shù)轉化為分數(shù)進行約分計算。
湊整法:在加減混合運算中,通常將和為零的兩個數(shù),分母相同的兩個數(shù),和為整數(shù)的兩個數(shù),乘積為整數(shù)的兩個數(shù)分別結合為一組求解。
分拆法:先將帶分數(shù)分拆成一個整數(shù)與一個真分數(shù)的和的形式,然后進行計算。
巧用運算律:在計算中巧妙運用加法運算律或乘法運算律往往使計算更簡便。
八年級數(shù)學上冊知識點總結 7
1、刻畫數(shù)據(jù)的集中趨勢(平均水平)的量:平均數(shù) 、眾數(shù)、中位數(shù)
2、平均數(shù)
平均數(shù):一般地,對于n個數(shù),我們把它們的和與n之商叫做這n個數(shù)的算術平均數(shù),簡稱平均數(shù)。
加權平均數(shù)。
3、眾數(shù)
一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。
4、中位數(shù)
一般地,將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。
第七章 平行線的證明
1、平行線的性質
一般地,如果兩條線互相平行的直線被第三條直線所截,那么同位角相等,內錯角相等,同旁內角互補。
也可以簡單的說成:
兩直線平行,同位角相等;
兩直線平行,內錯角相等;
兩直線平行,同旁內角互補。
2、判定平行線
兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。
也可以簡單說成:
同位角相等兩直線平行 兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;如果同旁內角互補,那么這兩條直線平行。
其他兩條可以簡單說成:
內錯角相等兩直線平行
同旁內角相等兩直線平行
八年級數(shù)學上冊知識點總結 8
第十一章三角形
一、知識框架:
知識概念:
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
3、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩(wěn)定性。
7、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
8、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,
13、公式與性質:
、湃切蔚膬冉呛停喝切蔚膬冉呛蜑180°
、迫切瓮饨堑男再|:
性質1:三角形的一個外角等于和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大于任何一個和它不相鄰的內角。
、嵌噙呅蝺冉呛凸剑哼呅蔚膬冉呛偷扔凇180°
、榷噙呅蔚耐饨呛停憾噙呅蔚耐饨呛蜑360°。
、啥噙呅螌蔷的條數(shù):
①從邊形的一個頂點出發(fā)可以引條對角線,把多邊形分成個三角形。
②邊形共有條對角線。
第十二章全等三角形
一、知識框架:
二、知識概念:
1、基本定義:
、湃刃危耗軌蛲耆睾系膬蓚圖形叫做全等形。
、迫热切危耗軌蛲耆睾系膬蓚三角形叫做全等三角形。
⑶對應頂點:全等三角形中互相重合的頂點叫做對應頂點。
⑷對應邊:全等三角形中互相重合的邊叫做對應邊。
、蓪牵喝热切沃谢ハ嘀睾系慕墙凶鰧。
2、基本性質:
、湃切蔚姆(wěn)定性:三角形三邊的長度確定了,這個三角形的形狀、大小就全確定,這個性質叫做三角形的穩(wěn)定性。
、迫热切蔚男再|:全等三角形的對應邊相等,對應角相等。
3、全等三角形的判定定理:
、胚呥呥叄ǎ喝厡嗟鹊膬蓚三角形全等。
、七吔沁叄ǎ簝蛇吅退鼈兊膴A角對應相等的兩個三角形全等。
、墙沁吔牵ǎ簝山呛退鼈兊膴A邊對應相等的兩個三角形全等。
⑷角角邊():兩角和其中一個角的對邊對應相等的兩個三角形全等。
、尚边、直角邊():斜邊和一條直角邊對應相等的兩個直角三角形全等。
4、角平分線:
、女嫹ǎ
、菩再|定理:角平分線上的點到角的兩邊的距離相等。
、切再|定理的逆定理:角的內部到角的兩邊距離相等的點在角的平分線上。
5、證明的基本方法:
、琶鞔_命題中的已知和求證。(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關系)
、聘鶕(jù)題意,畫出圖形,并用數(shù)字符號表示已知和求證。
、墙(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程。
第十三章軸對稱
一、知識框架:
二、知識概念:
1、基本概念:
、泡S對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形。
⑵兩個圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱。
⑶線段的垂直平分線:經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。
、鹊妊切危河袃蓷l邊相等的三角形叫做等腰三角形。相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角。
、傻冗吶切危喝龡l邊都相等的三角形叫做等邊三角形。
2、基本性質:
、艑ΨQ的性質:
、俨还苁禽S對稱圖形還是兩個圖形關于某條直線對稱,對稱軸都是任何一對對應點所連線段的垂直平分線。
、趯ΨQ的圖形都全等。
、凭段垂直平分線的性質:
①線段垂直平分線上的點與這條線段兩個端點的距離相等。
、谂c一條線段兩個端點距離相等的點在這條線段的垂直平分線上。
⑶關于坐標軸對稱的點的坐標性質
八年級數(shù)學上冊知識點總結 9
1 、全等三角形的對應邊、對應角相等
2、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
3、 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
4 、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
5 、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
6 、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
7 、定理1 在角的平分線上的點到這個角的兩邊的距離相等
8 、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
9 、角的平分線是到角的兩邊距離相等的所有點的集合
10、 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
11、 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
12、 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
13 、推論3 等邊三角形的各角都相等,并且每一個角都等于60°
14 、等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
15 、推論1 三個角都相等的三角形是等邊三角形
16 、推論 2 有一個角等于60°的等腰三角形是等邊三角形
17、 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
18 、直角三角形斜邊上的中線等于斜邊上的一半
19 、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
20 、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
初二數(shù)學求定義域口訣
求定義域有講究,四項原則須留意。
負數(shù)不能開平方,分母為零無意義。
指是分數(shù)底正數(shù),數(shù)零沒有零次。
限制條件不唯一,滿足多個不等式。
求定義域要過關,四項原則須注意。
負數(shù)不能開平方,分母為零無意義。
分數(shù)指數(shù)底正數(shù),數(shù)零沒有零次。
限制條件不唯一,不等式組求解集。
初中提高數(shù)學成績訣竅
很多初中生認為自己只要上數(shù)學課聽得懂就夠了,但是一做到綜合題就蒙了,基礎題會做,但是會馬虎。這類問題都是學生在課堂上都以為自己聽得懂就夠了。
初中同學要首先對數(shù)學做一個認知,聽得懂≠會做,會做≠拿的到分。聽得懂只占你數(shù)學成績的20%,僅僅聽得懂只說明你理解能力還可以,不說明你能拿到很高的數(shù)學成績。
只有聽的懂理解了加上練,再加上多練,達到最后又快又準的做出來,這時候的數(shù)學成績才會有長足的進步。
八年級數(shù)學上冊知識點總結 10
一、四邊形性質探索
定義:若兩條直線互相平行,則其中一條直線上任意兩點到另一條直線的距離相等,這個距離稱為平行線之間的距離。
平行四邊形:兩組對邊分別平行的四邊形,對邊相等,對角相等,對角線互相平分。兩組對邊分別平行的四邊形是平行四邊形,兩組對邊分別相等的四邊形是平行四邊形,兩條對角線互相平分的四邊形是平行四邊形,一組對邊平行且相等的四邊形是平行四邊形
菱形:一組鄰邊相等的平行四邊形(平行四邊形的性質)。四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。一組鄰邊相等的平行四邊形是菱形,對角線互相垂直的平行四邊形是菱形,四條邊都相等的四邊形是菱形。
矩形:有一個內角是直角的平行四邊形(平行四邊形的性質)。對角線相等,四個角都是直角。有一個內角是直角的平行四邊形是矩形,對角線相等的平行四邊形是矩形。
正方形:一組鄰邊相等的矩形。正方形具有平行四邊形、菱形、矩形的一切性質。一組鄰邊相等的矩形是正方形,一個內角是直角的菱形是正方形。
梯形:一組對邊平行而另一組對邊不平行的四邊形。一組對邊平行而另一組對邊不平行的四邊形是梯形。
等腰梯形:兩條腰相等的梯形。同一底上的兩個內角相等,對角線相等。兩腰相等的梯形是等腰梯形,同一底上兩個內角相等的梯形是等腰梯形。
直角梯形:一條腰和底垂直的梯形。一條腰和底垂直的梯形是直角梯形。
多邊形:在平面內,由若干條不在同一條直線上的線段首尾順次相連組成的封閉圖形叫做多邊形。n邊形的內角和等于(n—2)×180
多邊形內角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角。多邊形的外角和都等于360°。三角形、四邊形和六邊形都可以密鋪。
定義:在平面內,一個圖形繞某個點旋轉180°,如果旋轉前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。
中心對稱圖形上的每一對對應點所連成的線段都被對稱中心平分。
二、實數(shù)
定義:任何有限小數(shù)或無限循環(huán)小數(shù)都是有理數(shù)。無限不循環(huán)小數(shù)叫做無理數(shù)(有理數(shù)總可以用有限小數(shù)或無限循環(huán)小數(shù)表示)
一般地,如果一個正數(shù)x的平方等于a,那么這個正數(shù)x就叫做a的算術平方根。特別地,我們規(guī)定0的算術平方根是0。
一般地,如果一個數(shù)x的平方等于a,那么這個數(shù)x就叫做a的平方根(也叫二次方根)一個正數(shù)有兩個平方根;0只有一個平方根,它是0本身;負數(shù)沒有平方根。求一個數(shù)a的平方根的運算,叫做開平方,其中a叫做被開方數(shù)。
一般地,如果一個數(shù)x的立方等于a,那么這個數(shù)x就叫做a的立方根(也叫做三次方根)。正數(shù)的立方根是正數(shù);0的立方根是0;負數(shù)的立方根是負數(shù)。求一個數(shù)a的立方根的運算,叫做開立方,其中a叫做被開方數(shù)。有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù),即實數(shù)可以分為有理數(shù)和無理數(shù)。
每一個實數(shù)都可以用數(shù)軸上的一個點來表示;反過來,數(shù)軸上的每一個點都表示一個實數(shù)。即實數(shù)和數(shù)軸上的點是一一對應的。
在數(shù)軸上,右邊的點表示的數(shù)比左邊的點表示的數(shù)大。
三、全等三角形
(1)形狀、大小相同的圖形能夠完全重合;
。2)全等形:能夠完全重合的兩個圖形叫做全等形;
。3)全等三角形:能夠完全重合的兩個三角形叫做全等三角形;
。4)平移、翻折、旋轉前后的圖形全等;
。5)對應頂點:全等三角形中相互重合的頂點叫做對應頂點;
。6)對應角:全等三角形中相互重合的角叫做對應角;
。7)對應邊:全等三角形中相互重合的邊叫做對應邊;
(8)全等表示方法:用“@”表示,讀作“全等于”(注意:記兩個三角形全等時,把表示對應頂點的字母寫在對應的位置上)
。9)全等三角形的性質:
、偃热切蔚膶呄嗟;
、谌热切蔚膶窍嗟。
八年級數(shù)學上冊知識點總結 11
1、四邊形在同一平面內,由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。
2、四邊形具有不穩(wěn)定性
3、四邊形的內角和定理及外角和定理
四邊形的內角和定理:四邊形的內角和等于360°。
四邊形的外角和定理:四邊形的外角和等于360°。
推論:多邊形的內角和定理:n邊形的內角和等于(n?2)?180°;
多邊形的外角和定理:任意多邊形的外角和等于360°。
6、設多邊形的邊數(shù)為n,則多邊形的對角線共有n(n?
3)條。從n邊形的一個頂點出2
發(fā)能引(n-3)條對角線,將n邊形分成(n-2)個三角形。
1、平行四邊形的定義
兩組對邊分別平行的四邊形叫做平行四邊形。
2、平行四邊形的性質
(1)平行四邊形的對邊平行且相等。
(2)平行四邊形相鄰的角互補,對角相等
(3)平行四邊形的對角線互相平分。
(4)平行四邊形是中心對稱圖形,對稱中心是對角線的交點。
常用點:(1)若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段
的中點是對角線的交點,并且這條直線二等分此平行四邊形的面積。
(2)推論:夾在兩條平行線間的平行線段相等。
3、平行四邊形的判定
(1)定義:兩組對邊分別平行的四邊形是平行四邊形
(2)定理1:兩組對角分別相等的四邊形是平行四邊形
(3)定理2:兩組對邊分別相等的四邊形是平行四邊形
(4)定理3:對角線互相平分的四邊形是平行四邊形
(5)定理4:一組對邊平行且相等的四邊形是平行四邊形
4、兩條平行線的距離
兩條平行線中,一條直線上的任意一點到另一條直線的距離,叫做這兩條平行線的距離。平行線間的距離處處相等。
5、平行四邊形的面積
S平行四邊形=底邊長×高=ah
一、函數(shù):
一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
二、自變量取值范圍
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負數(shù))、實際意義幾方面考慮。
三、函數(shù)的三種表示法及其優(yōu)缺點
(1)關系式(解析)法
兩個變量間的函數(shù)關系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做關系式(解析)法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關系,這種表示法叫做列表法。
(3)圖象法
用圖象表示函數(shù)關系的方法叫做圖象法。
四、由函數(shù)關系式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
五、正比例函數(shù)和一次函數(shù)
1、正比例函數(shù)和一次函數(shù)的概念
一般地,若兩個變量x,y間的關系可以表示成(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。
特別地,當一次函數(shù)中的b=0時(即)(k為常數(shù),k0),稱y是x的正比例函數(shù)。
2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線
3、一次函數(shù)、正比例函數(shù)圖像的主要特征:一次函數(shù)的圖像是經(jīng)過點(0,b)的直線;正比例函數(shù)的圖像是經(jīng)過原點(0,0)的直線。
1、二元一次方程
含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的整式方程叫做二元一次方程。
2、二元一次方程的解
適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。
3、二元一次方程組
含有兩個未知數(shù)的兩個一次方程所組成的一組方程,叫做二元一次方程組。
4、二元一次方程組的解
二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。
5、二元一次方程組的解法
(1)代入(消元)法(2)加減(消元)法
1、刻畫數(shù)據(jù)的集中趨勢(平均水平)的量:平均數(shù)、眾數(shù)、中位數(shù)
2、平均數(shù)
(2)加權平均數(shù):
3、眾數(shù)
一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。
4、中位數(shù)
一般地,將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。
八年級數(shù)學上冊知識點總結 12
1、對稱軸:如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2、性質:
。1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
(2)角平分線上的點到角兩邊距離相等。
。3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。
(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
。5)軸對稱圖形上對應線段相等、對應角相等。
3、等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)
4、等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。
5、等腰三角形的判定:等角對等邊。
6、等邊三角形角的特點:三個內角相等,等于60°。
7、等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形
有兩個角是60°的三角形是等邊三角形。
8、直角三角形中,30°角所對的直角邊等于斜邊的一半。
9、直角三角形斜邊上的中線等于斜邊的一半。
八年級數(shù)學上冊知識點總結 13
中線
1、等腰三角形底邊上的中線垂直底邊,平分頂角;
2、等腰三角形兩腰上的中線相等,并且它們的交點與底邊兩端點距離相等。
1、兩邊上中線相等的三角形是等腰三角形;
2、如果一個三角形的一邊中線垂直這條邊(平分這個邊的對角),那么這個三角形是等腰三角形
角平分線
1、等腰三角形頂角平分線垂直平分底邊;
2、等腰三角形兩底角平分線相等,并且它們的交點到底邊兩端點的距離相等。
1、如果三角形的頂角平分線垂直于這個角的對邊(平分對邊),那么這個三角形是等腰三角形;
2、三角形中兩個角的平分線相等,那么這個三角形是等腰三角形。
高線
1、等腰三角形底邊上的高平分頂角、平分底邊;
2、等腰三角形兩腰上的高相等,并且它們的交點和底邊兩端點距離相等。
1、如果一個三角形一邊上的高平分這條邊(平分這條邊的對角),那么這個三角形是等腰三角形;
2、有兩條高相等的三角形是等腰三角形。
八年級數(shù)學上冊知識點總結 14
1、平均數(shù)
、僖话愕兀瑢τ趎個數(shù)x1x2...xn,我們把(x1+x2+···+xn)叫做這n個數(shù)的算數(shù)平均數(shù),簡稱平均數(shù)記為。
、谠趯嶋H問題中,一組數(shù)據(jù)里的各個數(shù)據(jù)的“重要程度”未必相同,因而在計算,這組數(shù)據(jù)的平均數(shù)時,往往給每個數(shù)據(jù)一個權,叫做加權平均數(shù)
2、中位數(shù)與眾數(shù)
、僦形粩(shù):一般地,n個數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)
、谝唤M數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)
、燮骄鶖(shù)、中位數(shù)和眾數(shù)都是描述數(shù)據(jù)集中趨勢的統(tǒng)計量
、苡嬎闫骄鶖(shù)時,所有數(shù)據(jù)都參加運算,它能充分地利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實生活中較為常用,但他容易受極端值影響。
、葜形粩(shù)的優(yōu)點是計算簡單,受極端值影響較小,但不能充分利用所有數(shù)據(jù)的信息
⑥各個數(shù)據(jù)重復次數(shù)大致相等時,眾數(shù)往往沒有特別意義
3、從統(tǒng)計圖分析數(shù)據(jù)的集中趨勢
4、數(shù)據(jù)的離散程度
、賹嶋H生活中,除了關心數(shù)據(jù)的集中趨勢外,人們還關注數(shù)據(jù)的離散程度,即它們相對于集中趨勢的偏離情況。一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,(稱為極差),就是刻畫數(shù)據(jù)離散程度的一個統(tǒng)計量
、跀(shù)學上,數(shù)據(jù)的離散程度還可以用方差或標準差刻畫
數(shù)學的方法和技巧
狠抓“雙基”訓練
“雙基”即基礎知識與基本技能。基礎知識是指數(shù)學概念、定理、法則、公式以及各種知識之間的內在聯(lián)系;基本技能是一種較穩(wěn)定的心理因素,是一種已經(jīng)程式化了的動作,初中數(shù)學基本技能包括運算技能、畫圖技能、運用數(shù)字語言的技能、推理論證的技能等。只有扎實地掌握“雙基”,才能靈活應用、深入探索,不斷創(chuàng)新。
解決疑難
這是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯的作業(yè)再做一遍。對錯誤的地方?jīng)]弄清楚要反復思考,實在解決不了的要請教老師和同學,并經(jīng)常把容易錯的地方拿來復習強化,作適當?shù)闹貜托跃毩,把從老師、同學處獲得的東西消化變成自己的知識,長期堅持使對所學知識由“熟”到“活”。
初中數(shù)學二元一次方程組知識點
(一)定義:含有兩個未知數(shù),并且未知項的最高次數(shù)是1的整式方程叫做二元一次方程。
(二)二元一次方程組的解法
(1)代入法
由一個二次方程和一個一次方程所組成的方程組通常用代入法來解,這是基本的消元降次方法。
(2)因式分解法
在二元二次方程組中,至少有一個方程可以分解時,可采用因式分解法通過消元降次來解。
(3)配方法
將一個式子,或一個式子的某一部分通過恒等變形化為完全平方式或幾個完全平方式的和。
(4)韋達定理法
通過韋達定理的逆定理,可以利用兩數(shù)的和積關系構造一元二次方程。
(5)消常數(shù)項法
當方程組的兩個方程都缺一次項時,可用消去常數(shù)項的方法解。
、鄯讲钍歉鱾數(shù)據(jù)與平均數(shù)差的平方的平均數(shù)
、芷渲惺莤1,x2.....xn平均數(shù),s2是方差,而標準差就是方差的算術平方根
⑤一般而言,一組數(shù)據(jù)的極差、方差或標準差越小,這組數(shù)據(jù)就越穩(wěn)定。
八年級數(shù)學上冊知識點總結 15
一、變量與函數(shù)
1、變量:在一個變化過程中,數(shù)值發(fā)生變化的量叫做變量。
2、常量:數(shù)值始終不變的量叫做常量。
3、函數(shù):一般的,在一個變化過程中,如果有兩個變量x與y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們就說y是x的函數(shù),x是自變量。Y的值叫函數(shù)值。
4、函數(shù)解析式:表示x與y的函數(shù)關系的式子,叫函數(shù)解析式。自變量的取值不能使函數(shù)解析式的分母為0。
5、函數(shù)的圖像:一般的,對于一個函數(shù),如果把自變量與函數(shù)的每對對應值分別作為點的橫、縱坐標,那么在坐標平面內由這些點組成的圖形,就是這個函數(shù)的圖象。
6、描點法畫函數(shù)圖像的步驟:①列表、②描點、③連線。
表示函數(shù)的方法:①列表法、②解析式法、③圖像法。
二、一次函數(shù)
1、正比例函數(shù):一般地,形如y=kx(k為常數(shù),且k≠0)的函數(shù)叫做正比例函數(shù)、其中k叫做比例系數(shù)。
2、正比例函數(shù)的圖象與性質:
(1)圖象:正比例函數(shù)y= kx (k是常數(shù),k≠0))的圖象是經(jīng)過原點的一條直線,我們稱它為直線y= kx 。
(2)性質:當k>0時,直線y= kx經(jīng)過第三,一象限,從左向右上升,即隨著x的增大y也增大;當k<0時,直線y= kx經(jīng)過二,四象限,從左向右下降,即隨著x的增大y反而減小。
3、一次函數(shù):一般地,形如y=kx+b(k,b為常數(shù),且k≠0)的函數(shù)叫做一次函數(shù)。當b =0時,y=kx+b即為y=kx,所以正比例函數(shù),是一次函數(shù)的特例。
4、函數(shù)的圖象與性質:
(1)一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象是一條直線,我們稱它為直線y=kx+b。相當于由直線y=kx平移|b|個單位長度而得。
(2)性質:當k>0時,直線y= kx+b從左向右上升,即隨著x的增大y也增大;當k<0時,直線y= kx+b從左向右下降,即隨著x的增大y反而減小。
5、求函數(shù)解析式的方法:待定系數(shù)法(先設出函數(shù)解析式,再根據(jù)條件確定解析式中未知的系數(shù),從而具體寫出這個式子的方法。)
【八年級數(shù)學上冊知識點總結】相關文章:
八年級數(shù)學上冊知識點總結09-01
高二數(shù)學上冊知識點總結09-21
初二數(shù)學上冊知識點總結09-20
初三數(shù)學上冊知識點總結06-19
八年級上冊數(shù)學知識點03-15
八年級上冊數(shù)學知識點10-18
(合集)八年級上冊數(shù)學知識點11-07
【精品】八年級上冊數(shù)學知識點11-08
人教版八年級數(shù)學上冊知識點10-08