亚欧洲精品在线观看,窝窝影院午夜看片,久久国产成人午夜av影院宅,午夜91,免费国产人成网站,ts在线视频,欧美激情在线一区

數(shù)學(xué) 百文網(wǎng)手機站

八年級數(shù)學(xué)知識點歸納

時間:2022-01-20 16:35:20 數(shù)學(xué) 我要投稿

八年級數(shù)學(xué)知識點歸納6篇

  在日復(fù)一日的學(xué)習(xí)中,大家都沒少背知識點吧?知識點也可以理解為考試時會涉及到的知識,也就是大綱的分支。掌握知識點有助于大家更好的學(xué)習(xí)。下面是小編收集整理的八年級數(shù)學(xué)知識點歸納,希望對大家有所幫助。

八年級數(shù)學(xué)知識點歸納6篇

八年級數(shù)學(xué)知識點歸納1

  第十一章 全等三角形

  一、知識框架

  二、知識概念

  1。全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經(jīng)過平移、旋轉(zhuǎn)、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。

  2。全等三角形的性質(zhì):全等三角形的對應(yīng)角相等、對應(yīng)邊相等。

  3。三角形全等的判定公理及推論有:

  (1)“邊角邊”簡稱“SAS”

  (2)“角邊角”簡稱“ASA”

  (3)“邊邊邊”簡稱“SSS”

  (4)“角角邊”簡稱“AAS”

  (5)斜邊和直角邊相等的兩直角三角形(HL)。

  4。角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點在叫的平分線上。

  5。證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系)。②、回顧三角形判定,搞清我們還需要什么。③、正確地書寫證明格式(順序和對應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題)。

  在學(xué)習(xí)三角形的全等時,教師應(yīng)該從實際生活中的圖形出發(fā),引出全等圖形進(jìn)而引出全等三角形。通過直觀的理解和比較發(fā)現(xiàn)全等三角形的奧妙之處。在經(jīng)歷三角形的角平分線、中線等探索中激發(fā)學(xué)生的集合思維,啟發(fā)他們的靈感,使學(xué)生體會到集合的真正魅力。

  第十二章 軸對稱

  一、知識框架

  二、知識概念

  1。對稱軸:如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。

  2。性質(zhì):(1)軸對稱圖形的對稱軸,是任何一對對應(yīng)點所連線段的垂直平分線。

  (2)角平分線上的點到角兩邊距離相等。

  (3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。

  (4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

  (5)軸對稱圖形上對應(yīng)線段相等、對應(yīng)角相等。

  3。等腰三角形的性質(zhì):等腰三角形的兩個底角相等,(等邊對等角)

  4。等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。

  5。等腰三角形的判定:等角對等邊。

  6。等邊三角形角的特點:三個內(nèi)角相等,等于60°,

  7。等邊三角形的判定:三個角都相等的三角形是等腰三角形。

  有一個角是60°的等腰三角形是等邊三角形。

  有兩個角是60°的三角形是等邊三角形。

  8。直角三角形中,30°角所對的直角邊等于斜邊的一半。

  9。直角三角形斜邊上的中線等于斜邊的一半。

  本章內(nèi)容要求學(xué)生在建立在軸對稱概念的基礎(chǔ)上,能夠?qū)ι钪械膱D形進(jìn)行分析鑒賞,親身經(jīng)歷數(shù)學(xué)美,正確理解等腰三角形、等邊三角形等的性質(zhì)和判定,并利用這些性質(zhì)來解決一些數(shù)學(xué)問題。

  第十三章 實數(shù)

  一、知識框架

  二、知識概念

  1。算術(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時,a才有算術(shù)平方根。

  2。平方根:一般地,如果一個數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。

  3。正數(shù)有兩個平方根(一正一負(fù))它們互為相反數(shù);0只有一個平方根,就是它本身;負(fù)數(shù)沒有平方根。

  4。正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。

  5。數(shù)a的相反數(shù)是-a,一個正實數(shù)的絕對值是它本身,一個負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0

  實數(shù)部分主要要求學(xué)生了解無理數(shù)和實數(shù)的概念,知道實數(shù)和數(shù)軸上的點一一對應(yīng),能估算無理數(shù)的大小;了解實數(shù)的運算法則及運算律,會進(jìn)行實數(shù)的運算。重點是實數(shù)的意義和實數(shù)的分類;實數(shù)的運算法則及運算律。

  第十四章 一次函數(shù)

  一、知識框架

  二、知識概念

  1。一次函數(shù):若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時,稱y是x的正比例函數(shù)。

  2。正比例函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過原點(0,0)的一條直線。

  3。正比例函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過原點的直線,當(dāng)k>0時,直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大,當(dāng)k<0時,直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中:當(dāng)k>0時,y隨x的增大而增大;當(dāng)k<0時,y隨x的增大而減小。

  4。已知兩點坐標(biāo)求函數(shù)解析式:待定系數(shù)法

  一次函數(shù)是初中學(xué)生學(xué)習(xí)函數(shù)的開始,也是今后學(xué)習(xí)其它函數(shù)知識的基石。在學(xué)習(xí)本章內(nèi)容時,教師應(yīng)該多從實際問題出發(fā),引出變量,從具體到抽象的認(rèn)識事物。培養(yǎng)學(xué)生良好的變化與對應(yīng)意識,體會數(shù)形結(jié)合的思想。在教學(xué)過程中,應(yīng)更加側(cè)重于理解和運用,在解決實際問題的同時,讓學(xué)習(xí)體會到數(shù)學(xué)的實用價值和樂趣。

  第十五章整式的乘除與分解因式

  一、知識概念

  1。同底數(shù)冪的乘法法則:(m,n都是正數(shù))

  2。。冪的乘方法則:(m,n都是正數(shù))

  3。整式的乘法

  (1)單項式乘法法則:單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數(shù)作為積的一個因式。

  (2)單項式與多項式相乘:單項式乘以多項式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。

  (3)。多項式與多項式相乘

  多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。

  4。平方差公式:

  5。完全平方公式:

  6。同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a≠0,m、n都是正數(shù),且m>n)。

  在應(yīng)用時需要注意以下幾點:

 、俜▌t使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0。

 、谌魏尾坏扔0的數(shù)的0次冪等于1,即,如,(-2。50=1),則00無意義。

 、廴魏尾坏扔0的數(shù)的-p次冪(p是正整數(shù)),等于這個數(shù)的p的次冪的倒數(shù),即(a≠0,p是正整數(shù)),而0-1,0-3都是無意義的;當(dāng)a>0時,a-p的值一定是正的;當(dāng)a<0時,a-p的值可能是正也可能是負(fù)的,如,

  ④運算要注意運算順序。

  7。整式的除法

  單項式除法單項式:單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式;

  多項式除以單項式:多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加。

  8。分解因式:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。

  分解因式的一般方法:1。提公共因式法2。運用公式法3。十字相乘法

  分解因式的步驟:

  (1)先看各項有沒有公因式,若有,則先提取公因式;

  (2)再看能否使用公式法;

  (3)用分組分解法,即通過分組后提取各組公因式或運用公式法來達(dá)到分解的目的;

  (4)因式分解的最后結(jié)果必須是幾個整式的乘積,否則不是因式分解;

  (5)因式分解的結(jié)果必須進(jìn)行到每個因式在有理數(shù)范圍內(nèi)不能再分解為止。

  整式的乘除與分解因式這章內(nèi)容知識點較多,表面看來零碎的概念和性質(zhì)也較多,但實際上是密不可分的整體。在學(xué)習(xí)本章內(nèi)容時,應(yīng)多準(zhǔn)備些小組合作與交流活動,培養(yǎng)學(xué)生推理能力、計算能力。在做題中體驗數(shù)學(xué)法則、公式的簡潔美、和諧美,提高做題效率。

八年級數(shù)學(xué)知識點歸納2

  1、實數(shù)的概念及分類

 、賹崝(shù)的'分類

 、跓o理數(shù)

  無限不循環(huán)小數(shù)叫做無理數(shù)。

  在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:

  開方開不盡的數(shù),如 √7 ,3 √2等;

  有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如π /?+8等;

  有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;

  某些三角函數(shù)值,如sin60°等

  2、實數(shù)的倒數(shù)、相反數(shù)和絕對值

  ①相反數(shù)

  實數(shù)與它的相反數(shù)是一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應(yīng)的點關(guān)于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=-b,反之亦成立。

 、诮^對值

  在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離,叫做該數(shù)的絕對值。|a|≥0。0的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

  ③倒數(shù)

  如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。0沒有倒數(shù)。

 、軘(shù)軸

  規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。

  解題時要真正掌握數(shù)形結(jié)合的思想,理解實數(shù)與數(shù)軸的點是一一對應(yīng)的,并能靈活運用。

  ⑤估算

  3、平方根、算數(shù)平方根和立方根

 、偎阈g(shù)平方根

  一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x就叫做a的算術(shù)平方根。特別地,0的算術(shù)平方根是0。

  性質(zhì):正數(shù)和零的算術(shù)平方根都只有一個,0的算術(shù)平方根是0。

 、谄椒礁

  一般地,如果一個數(shù)x的平方等于a,即x2=a,那么這個數(shù)x就叫做a的平方根(或二次方根)。

  性質(zhì):一個正數(shù)有兩個平方根,它們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒有平方根。

  開平方求一個數(shù)a的平方根的運算,叫做開平方。注意 √a的雙重非負(fù)性:√a≥0 ; a≥0

 、哿⒎礁

  一般地,如果一個數(shù)x的立方等于a,即x3=a,那么這個數(shù)x就叫做a 的立方根(或三次方根)。

  表示方法:記作 3 √a

  性質(zhì):一個正數(shù)有一個正的立方根;一個負(fù)數(shù)有一個負(fù)的立方根;零的立方根是零。

  注意:- 3 √a=3 √-a,這說明三次根號內(nèi)的負(fù)號可以移到根號外面。

  4、實數(shù)大小的比較

  ①實數(shù)比較大小

  正數(shù)大于零,負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù);

  數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;

  兩個負(fù)數(shù),絕對值大的反而小。

 、趯崝(shù)大小比較的幾種常用方法

  數(shù)軸比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。

  求差比較:設(shè)a、b是實數(shù) a-b>0a>b; a-b=0a=b; a-b<0a<b 。

  求商比較法:設(shè)a、b是兩正實數(shù),

  絕對值比較法:設(shè)a、b是兩負(fù)實數(shù),則∣a∣>∣b∣a<b。

  平方法:設(shè)a、b是兩負(fù)實數(shù),則 a2>b2a<b 。

  5、算術(shù)平方根有關(guān)計算(二次根式)

 、俸卸胃枴 √ ”;被開方數(shù)a必須是非負(fù)數(shù)。

 、谛再|(zhì):

  ③運算結(jié)果若含有“ √ ”形式,必須滿足:

  被開方數(shù)的因數(shù)是整數(shù),因式是整式

  被開方數(shù)中不含能開得盡方的因數(shù)或因式

  6、實數(shù)的運算

 、倭N運算:加、減、乘、除、乘方 、開方。

 、趯崝(shù)的運算順序

  先算乘方和開方,再算乘除,最后算加減,如果有括號,就先算括號里面的。

 、圻\算律

  加法交換律 a+b= b+a

  加法結(jié)合律 (a+b)+c= a+( b+c )

  乘法交換律 ab= ba

  乘法結(jié)合律 (ab)c = a( bc )

  乘法對加法的分配律 a( b+c )=ab+ac

八年級數(shù)學(xué)知識點歸納3

  一

  1全等三角形的對應(yīng)邊、對應(yīng)角相等

  2邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等

  3角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等

  4推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等

  5邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等

  6斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等

  7定理1在角的平分線上的點到這個角的兩邊的距離相等

  8定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

  9角的平分線是到角的兩邊距離相等的所有點的集合

  10等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)

  11推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

  12等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

  13推論3等邊三角形的各角都相等,并且每一個角都等于60°

  14等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  15推論1三個角都相等的三角形是等邊三角形

  16推論2有一個角等于60°的等腰三角形是等邊三角形

  17在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

  18直角三角形斜邊上的中線等于斜邊上的一半

  19定理線段垂直平分線上的點和這條線段兩個端點的距離相等

  20逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  21線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  22定理1關(guān)于某條直線對稱的兩個圖形是全等形

  23定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線

  24定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

  25逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

  26勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

  27勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2,那么這個三角形是直角三角形

  28定理四邊形的內(nèi)角和等于360°

  29四邊形的外角和等于360°

  30多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°

  31推論任意多邊的外角和等于360°

  32平行四邊形性質(zhì)定理1平行四邊形的對角相等

  33平行四邊形性質(zhì)定理2平行四邊形的對邊相等

  34推論夾在兩條平行線間的平行線段相等

  35平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分

  36平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形

  37平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形

  38平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形

  39平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形

  40矩形性質(zhì)定理1矩形的四個角都是直角

  41矩形性質(zhì)定理2矩形的對角線相等

  42矩形判定定理1有三個角是直角的四邊形是矩形

  43矩形判定定理2對角線相等的平行四邊形是矩形

  44菱形性質(zhì)定理1菱形的四條邊都相等

  45菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角

  46菱形面積=對角線乘積的一半,即S=(a×b)÷2

  47菱形判定定理1四邊都相等的四邊形是菱形

  48菱形判定定理2對角線互相垂直的平行四邊形是菱形

  49正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等

  50正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  51定理1關(guān)于中心對稱的兩個圖形是全等的

  52定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分

  53逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱

  54等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等

  55等腰梯形的兩條對角線相等

  56等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形

  57對角線相等的梯形是等腰梯形

  58平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  59推論1經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

  60推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊

  61三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半

  62梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h

  二

  一、軸對稱圖形

  1.把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關(guān)于這條直線(成軸)對稱。

  2.把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那么就說這兩個圖關(guān)于這條直線對稱。這條直線叫做對稱軸。折疊后重合的點是對應(yīng)點,叫做對稱點

  3、軸對稱圖形和軸對稱的區(qū)別與聯(lián)系

  4.軸對稱的性質(zhì)

 、訇P(guān)于某直線對稱的兩個圖形是全等形。

 、谌绻麅蓚圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點所連線段的垂直平分線。

  ③軸對稱圖形的對稱軸,是任何一對對應(yīng)點所連線段的垂直平分線。

  ④如果兩個圖形的對應(yīng)點連線被同條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。

  二、線段的垂直平分線

  1.經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。

  2.線段垂直平分線上的點與這條線段的兩個端點的距離相等

  3.與一條線段兩個端點距離相等的點,在線段的垂直平分線上

  三、用坐標(biāo)表示軸對稱小結(jié):

  1.在平面直角坐標(biāo)系中,關(guān)于x軸對稱的點橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù).關(guān)于y軸對稱的點橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等.

  2.三角形三條邊的垂直平分線相交于一點,這個點到三角形三個頂點的距離相等

  四、(等腰三角形)知識點回顧

  1.等腰三角形的性質(zhì)

 、.等腰三角形的兩個底角相等。(等邊對等角)

 、.等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)

  2、等腰三角形的判定:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)

  五、(等邊三角形)知識點回顧

  1.等邊三角形的性質(zhì):等邊三角形的三個角都相等,并且每一個角都等于600。

  2、等邊三角形的判定:

 、偃齻角都相等的三角形是等邊三角形。

 、谟幸粋角是600的等腰三角形是等邊三角形。

  3.在直角三角形中,如果一個銳角等于300,那么它所對的直角邊等于斜邊的一半。

 、佟⒌妊切蔚男再|(zhì)

  定理:等腰三角形的兩個底角相等(簡稱:等邊對等角)

  推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。

  推論2:等邊三角形的各個角都相等,并且每個角都等于60°。

  ②、等腰三角形的其他性質(zhì):

  (1)等腰直角三角形的兩個底角相等且等于45°

  (2)等腰三角形的底角只能為銳角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。

  (3)等腰三角形的三邊關(guān)系:設(shè)腰長為a,底邊長為b,則

  (4)等腰三角形的三角關(guān)系:設(shè)頂角為頂角為∠A,底角為∠B、∠C,則∠A=180°—2∠B,∠B=∠C=

 、、等腰三角形的判定

  等腰三角形的判定定理及推論:

  定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。這個判定定理常用于證明同一個三角形中的邊相等。

  推論1:三個角都相等的三角形是等邊三角形

  推論2:有一個角是60°的等腰三角形是等邊三角形。

  推論3:在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半。

  ④、三角形中的中位線

  連接三角形兩邊中點的線段叫做三角形的中位線。

  (1)三角形共有三條中位線,并且它們又重新構(gòu)成一個新的三角形。

  (2)要會區(qū)別三角形中線與中位線。

  三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。

  三角形中位線定理的作用:

  位置關(guān)系:可以證明兩條直線平行。

  數(shù)量關(guān)系:可以證明線段的倍分關(guān)系。

  常用結(jié)論:任一個三角形都有三條中位線,由此有:

  結(jié)論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。

  結(jié)論2:三條中位線將原三角形分割成四個全等的三角形。

  結(jié)論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。

  結(jié)論4:三角形一條中線和與它相交的中位線互相平分。

  結(jié)論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。

  三

  1.提公共因式法

  ※1.如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.

  如:

  ※2.概念內(nèi)涵:

  (1)因式分解的最后結(jié)果應(yīng)當(dāng)是“積”;

  (2)公因式可能是單項式,也可能是多項式;

  (3)提公因式法的理論依據(jù)是乘法對加法的分配律,即:

  ※3.易錯點點評:

  (1)注意項的符號與冪指數(shù)是否搞錯;

  (2)公因式是否提“干凈”;

  (3)多項式中某一項恰為公因式,提出后,括號中這一項為+1,不漏掉.

  2.運用公式法

  ※1.如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法.

  ※2.主要公式:

  (1)平方差公式:

  (2)完全平方公式:

  ¤3.易錯點點評:

  因式分解要分解到底.如就沒有分解到底.

  ※4.運用公式法:

  (1)平方差公式:

 、賾(yīng)是二項式或視作二項式的多項式;

 、诙検降拿宽(不含符號)都是一個單項式(或多項式)的平方;

 、鄱検钱愄.

  (2)完全平方公式:

 、賾(yīng)是三項式;

  ②其中兩項同號,且各為一整式的平方;

 、圻有一項可正負(fù),且它是前兩項冪的底數(shù)乘積的2倍.

  3.因式分解的思路與解題步驟:

  (1)先看各項有沒有公因式,若有,則先提取公因式;

  (2)再看能否使用公式法;

  (3)用分組分解法,即通過分組后提取各組公因式或運用公式法來達(dá)到分解的目的;

  (4)因式分解的最后結(jié)果必須是幾個整式的乘積,否則不是因式分解;

  (5)因式分解的結(jié)果必須進(jìn)行到每個因式在有理數(shù)范圍內(nèi)不能再分解為止.

  4.分組分解法:

  ※1.分組分解法:利用分組來分解因式的方法叫做分組分解法.

  如:

  ※2.概念內(nèi)涵:

  分組分解法的關(guān)鍵是如何分組,要嘗試通過分組后是否有公因式可提,并且可繼續(xù)分解,分組后是否可利用公式法繼續(xù)分解因式.

  ※3.注意:分組時要注意符號的變化.

  5.十字相乘法:

  ※1.對于二次三項式,將a和c分別分解成兩個因數(shù)的乘積,且滿足,往往寫成的形式,將二次三項式進(jìn)行分解.

  如:

  ※2.二次三項式的分解:

  ※3.規(guī)律內(nèi)涵:

  (1)理解:把分解因式時,如果常數(shù)項q是正數(shù),那么把它分解成兩個同號因數(shù),它們的符號與一次項系數(shù)p的符號相同.

  (2)如果常數(shù)項q是負(fù)數(shù),那么把它分解成兩個異號因數(shù),其中絕對值較大的因數(shù)與一次項系數(shù)p的符號相同,對于分解的兩個因數(shù),還要看它們的和是不是等于一次項系數(shù)p.

  ※4.易錯點點評:

  (1)十字相乘法在對系數(shù)分解時易出錯;

  (2)分解的結(jié)果與原式不等,這時通常采用多項式乘法還原后檢驗分解的是否正確.

  八年級數(shù)學(xué)學(xué)習(xí)方法

  1.做好準(zhǔn)備,提出問題,多次閱讀課本,查閱相關(guān)材料,回答自己提出的問題,并在老師談?wù)撔抡n之前努力掌握盡可能多的知識。如果你不能回答問題,你可以在老師的講座中解答。

  2。學(xué)會聽課。在初中教學(xué)中,教師經(jīng)常反復(fù)講解一個知識點,讓學(xué)生通過大量的練習(xí)掌握它。但是高中畢業(yè)后,老師不會讓學(xué)生通過大量的練習(xí)掌握知識點,而是通過一些相關(guān)的知識來引導(dǎo)學(xué)生去理解。這些知識是如何產(chǎn)生的,以及如何利用這些知識來解決一些相關(guān)的疑問?如果學(xué)生能夠理解,他們可以通過課外練習(xí)鞏固自己的知識。同時,學(xué)生可以根據(jù)教師的指導(dǎo)擴大知識。

  八年級數(shù)學(xué)學(xué)習(xí)技巧

  敢于表達(dá)自己的想法。在高中數(shù)學(xué)學(xué)習(xí)中,學(xué)生會遇到很多解決問題的技巧。也許這個方法對別人來說不是很熟悉,你知道。那么你需要學(xué)生敢于表達(dá)自己的想法,這樣你才能掌握更多的技能。它也可以激發(fā)學(xué)生的學(xué)習(xí)興趣,如果一個班是滿的。是老師在說話,課堂氣氛很沉悶,學(xué)生的學(xué)習(xí)效率也很低。

  學(xué)會看題

  高中比初中有更多的相關(guān)材料。高考是全社會關(guān)注的問題。因此,在高中的實踐尤其多,一些學(xué)生購買更多的材料。因此,如何利用主題來掌握我們學(xué)習(xí)的知識,擴大我們所學(xué)的知識是學(xué)習(xí)的關(guān)鍵。我認(rèn)為我們應(yīng)該看更多的話題,更多的思考,看看解決材料中問題的方法,思考方法中的原因,這樣我們就可以從更多的方法中學(xué)習(xí)。

  有很多方法來消化它們。因此,我們將不得不選擇去做這個問題,用一半的努力達(dá)到兩倍的結(jié)果。我建議每天練習(xí)一次,每周做一組完整的試題,看2到3組試題,從中找出這段時間數(shù)學(xué)學(xué)習(xí)的關(guān)鍵知識,這些是我們常用來解決問題的方法,以及可以用來優(yōu)化解題的方法。

八年級數(shù)學(xué)知識點歸納4

  1.某工廠生產(chǎn)了一批零件共1600件,從中任意抽取了80件進(jìn)行檢查,其中合格產(chǎn)品78件,其余不合格,則可估計這批零件中有______件不合格.

  2.下列調(diào)查工作需采用普查方式的是()

  A.環(huán)保部門對淮河某段水域的水污染情況的調(diào)查

  B.電視臺對正在播出的某電視節(jié)目收視率的調(diào)查

  C.質(zhì)檢部門對各廠家生產(chǎn)的電池使用壽命的調(diào)查

  D.企業(yè)在給職工做工作服前進(jìn)行的尺寸大小的調(diào)查

  3.為了解某校九年級學(xué)生每天的睡眠時間情況,隨機調(diào)查了該校九年級20名學(xué)生,將所得數(shù)據(jù)整理并制成下表:

  據(jù)此估計該校九年級學(xué)生每天的平均睡眠時間大約是______小時.

  4.一養(yǎng)魚專業(yè)戶從魚塘捕得同時放養(yǎng)的草魚100條,他從中任選5條,稱得它們的質(zhì)量如下(單位:kg):1.3,1.6,1.3,1.5,1.3.則這100條魚的總質(zhì)量約為______kg.

  【考點歸納】

  1.總體是指_________________________,個體是指_____________________,樣本是指________________________,樣本的個數(shù)叫做___________.

  2.樣本方差與標(biāo)準(zhǔn)差是衡量______________的量,其值越大,______越大.

  3.頻數(shù)是指________________________;頻率是___________________________.

  4.得到頻數(shù)分布直方圖的步驟_________________________________________.

  5.數(shù)據(jù)的統(tǒng)計方法有____________________________________________.

八年級數(shù)學(xué)知識點歸納5

  1、二元一次方程

 、俣淮畏匠

  含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的整式方程叫做二元一次方程。

 、诙淮畏匠痰慕

  適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。

  2、二元一次方程組

 、俸袃蓚未知數(shù)的兩個一次方程所組成的一組方程,叫做二元一次方程組。

 、诙淮畏匠探M的解

  二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。

  ③二元一次方程組的解法

  代入(消元)法

  加減(消元)法

 、芤淮魏瘮(shù)與二元一次方程(組)的關(guān)系:

  一次函數(shù)與二元一次方程的關(guān)系:

  直線y=kx+b上任意一點的坐標(biāo)都是它所對應(yīng)的二元一次方程kx- y+b=0的解

  一次函數(shù)與二元一次方程組的關(guān)系:

  二元一次方程組

  的解可看作兩個一次函數(shù)

  和 的圖象的交點。

  當(dāng)函數(shù)圖象有交點時,說明相應(yīng)的二元一次方程組有解;

  當(dāng)函數(shù)圖象(直線)平行即無交點時,說明相應(yīng)的二元一次方程組無解。

八年級數(shù)學(xué)知識點歸納6

  1、函數(shù)

  一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。

  2、自變量取值范圍

  使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負(fù)數(shù))、實際意義幾方面考慮。

  3、函數(shù)的三種表示法及其優(yōu)缺點

  關(guān)系式(解析)法

  兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做關(guān)系式(解析)法。

  列表法

  把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

  圖象法

  用圖象表示函數(shù)關(guān)系的方法叫做圖象法。

  4、由函數(shù)關(guān)系式畫其圖像的一般步驟

  列表:列表給出自變量與函數(shù)的一些對應(yīng)值。

  描點:以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點。

  連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

  5、正比例函數(shù)和一次函數(shù)

 、僬壤瘮(shù)和一次函數(shù)的概念

  一般地,若兩個變量x,y間的關(guān)系可以表示成y=kx+b (k,b為常數(shù),k不等于 0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。

  特別地,當(dāng)一次函數(shù)y=kx+b中的b=0時(k為常數(shù),k 不等于0),稱y是x的正比例函數(shù)。

 、谝淮魏瘮(shù)的圖像:

  所有一次函數(shù)的圖像都是一條直線。

 、垡淮魏瘮(shù)、正比例函數(shù)圖像的主要特征

  一次函數(shù)y=kx+b的圖像是經(jīng)過點(0,b)的直線;

  正比例函數(shù)y=kx的圖像是經(jīng)過原點(0,0)的直線。

 、苷壤瘮(shù)的性質(zhì)

  一般地,正比例函數(shù) 有下列性質(zhì):

  當(dāng)k>0時,圖像經(jīng)過第一、三象限,y隨x的增大而增大;

  當(dāng)k<0時,圖像經(jīng)過第二、四象限,y隨x的增大而減小。

 、菀淮魏瘮(shù)的性質(zhì)

  一般地,一次函數(shù) 有下列性質(zhì):

  當(dāng)k>0時,y隨x的增大而增大;

  當(dāng)k<0時,y隨x的增大而減小。

  ⑥正比例函數(shù)和一次函數(shù)解析式的確定

  確定一個正比例函數(shù),就是要確定正比例函數(shù)定義式y(tǒng)=kx(k 不等于0)中的常數(shù)k。

  確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k 不等于0)中的常數(shù)k和b。解這類問題的一般方法是待定系數(shù)法.

  ⑦一次函數(shù)與一元一次方程的關(guān)系

  任何一個一元一次方程都可轉(zhuǎn)化為:kx+b=0(k、b為常數(shù),k≠0)的形式。而一次函數(shù)解析式形式正是y=kx+b(k、b為常數(shù),k≠0)。當(dāng)函數(shù)值為0時,即kx+b=0就與一元一次方程完全相同。

  結(jié)論:由于任何一元一次方程都可轉(zhuǎn)化為kx+b=0(k、b為常數(shù),k≠0)的形式。所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)一次函數(shù)值為0時,求相應(yīng)的自變量的值。

  從圖象上看,這相當(dāng)于已知直線y=kx+b確定它與x軸交點的橫坐標(biāo)值。

【八年級數(shù)學(xué)知識點歸納6篇】相關(guān)文章:

數(shù)學(xué)高考精選知識點歸納11-08

高考數(shù)學(xué)幾何知識點歸納09-10

小升初數(shù)學(xué)知識點歸納12-09

高考數(shù)學(xué)的知識點歸納11-15

數(shù)學(xué)必修二知識點歸納10-31

數(shù)學(xué)知識點歸納總結(jié)08-04

高考數(shù)學(xué)知識點歸納01-27

中考數(shù)學(xué)整式知識點歸納10-22

中考數(shù)學(xué)知識點歸納10-30

數(shù)學(xué)初一知識點歸納10-09