亚欧洲精品在线观看,窝窝影院午夜看片,久久国产成人午夜av影院宅,午夜91,免费国产人成网站,ts在线视频,欧美激情在线一区

高考備考

數(shù)學高考知識點歸納

時間:2021-11-08 18:09:45 高考備考 我要投稿

數(shù)學高考精選知識點歸納

  在平日的學習中,不管我們學什么,都需要掌握一些知識點,知識點在教育實踐中,是指對某一個知識的泛稱。哪些才是我們真正需要的知識點呢?以下是小編精心整理的數(shù)學高考精選知識點歸納,僅供參考,大家一起來看看吧。

數(shù)學高考精選知識點歸納

數(shù)學高考精選知識點歸納1

  一個推導

  利用錯位相減法推導等比數(shù)列的前n項和:Sn=a1+a1q+a1q2+…+a1qn—1

  同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn

  兩式相減得(1—q)Sn=a1—a1qn,∴Sn=(q≠1)

  兩個防范

 。1)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗證a1≠0

  (2)在運用等比數(shù)列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤、

  三種方法

  等比數(shù)列的判斷方法有:

 。1)定義法:若an+1/an=q(q為非零常數(shù))或an/an—1=q(q為非零常數(shù)且n≥2且n∈N,則{an}是等比數(shù)列、

  (2)中項公式法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈N,則數(shù)列{an}是等比數(shù)列、

  (3)通項公式法:若數(shù)列通項公式可寫成an=c·qn(c,q均是不為0的常數(shù),n∈N,則{an}是等比數(shù)列

  注:前兩種方法也可用來證明一個數(shù)列為等比數(shù)列

數(shù)學高考精選知識點歸納2

  (1)先看“充分條件和必要條件”

  當命題“若p則q”為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。

  但為什么說q是p的必要條件呢?

  事實上,與“p=>q”等價的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。

 。2)再看“充要條件”

  若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q

  (3)定義與充要條件

  數(shù)學中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。

  顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。

  “充要條件”有時還可以改用“當且僅當”來表示,其中“當”表示“充分”!皟H當”表示“必要”。

 。4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質定理中的“結論”都可作為必要條件。

數(shù)學高考精選知識點歸納3

  1、進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進行求解、

  2、在應用條件時,易A忽略是空集的情況

  3、你會用補集的思想解決有關問題嗎?

  4、簡單命題與復合命題有什么區(qū)別?四種命題之間的相互關系是什么?如何判斷充分與必要條件?

  5、你知道“否命題”與“命題的否定形式”的區(qū)別、

  6、求解與函數(shù)有關的問題易忽略定義域優(yōu)先的原則、

  7、判斷函數(shù)奇偶性時,易忽略檢驗函數(shù)定義域是否關于原點對稱、

  8、求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標注該函數(shù)的定義域、

  9、原函數(shù)在區(qū)間[—a,a]上單調遞增,則一定存在反函數(shù),且反函數(shù)也單調遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調

  10、你熟練地掌握了函數(shù)單調性的證明方法嗎?定義法(取值,作差,判正負)和導數(shù)法

  11、求函數(shù)單調性時,易錯誤地在多個單調區(qū)間之間添加符號“∪”和“或”;單調區(qū)間不能用集合或不等式表示、

  12、求函數(shù)的值域必須先求函數(shù)的定義域。

  13、如何應用函數(shù)的單調性與奇偶性解題?①比較函數(shù)值的大;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題)、這幾種基本應用你掌握了嗎?

  14、解對數(shù)函數(shù)問題時,你注意到真數(shù)與底數(shù)的限制條件了嗎?

  15、三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數(shù)求最值?

  16、用換元法解題時易忽略換元前后的等價性,易忽略參數(shù)的范圍。

  17、“實系數(shù)一元二次方程有實數(shù)解”轉化時,你是否注意到:當時,“方程有解”不能轉化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項系數(shù)可能為的零的情形?

  18、利用均值不等式求最值時,你是否注意到:“一正;二定;三等”、

  19、絕對值不等式的解法及其幾何意義是什么?

  20、解分式不等式應注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?

  21、解含參數(shù)不等式的通法是“定義域為前提,函數(shù)的單調性為基礎,分類討論是關鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”

  22、在求不等式的解集、定義域及值域時,其結果一定要用集合或區(qū)間表示;不能用不等式表示、

  23、兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a<0、

  24、解決一些等比數(shù)列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?

  25、在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數(shù)。

  26、你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項和與所有項的和的不同嗎?什么樣的無窮等比數(shù)列的所有項的和必定存在?

  27、數(shù)列單調性問題能否等同于對應函數(shù)的單調性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)

  28、應用數(shù)學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數(shù)學方法用來證明時也成立。

  29、正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?

  30、三角函數(shù)的定義及單位圓內的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?

  31、在解三角問題時,你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?

  32、你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現(xiàn)特殊角、異角化同角,異名化同名,高次化低次)

  33、反正弦、反余弦、反正切函數(shù)的取值范圍分別是

  34、你還記得某些特殊角的三角函數(shù)值嗎?

  35、掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質、你會寫三角函數(shù)的單調區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數(shù)形結合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?

  36、函數(shù)的圖象的平移,方程的平移以及點的平移公式易混:

 。1)函數(shù)的圖象的平移為“左+右—,上+下—”;如函數(shù)的圖象左移2個單位且下移3個單位得到的圖象的解析式為y=2(x+2)+4—3,即y=2x+5、

  (2)方程表示的圖形的平移為“左+右—,上—下+”;如直線左移2個個單位且下移3個單位得到的圖象的解析式為2(x+2)—(y+3)+4=0,即y=2x+5、

 。3)點的平移公式:點P(x,y)按向量平移到點P(x,y),則x=x+hy=y+k、

  37、在三角函數(shù)中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數(shù)值,再判定角的范圍)

  38、形如的周期都是,但的周期為。

  39、正弦定理時易忘比值還等于2R。

數(shù)學高考精選知識點歸納4

  符合一定條件的動點所形成的圖形,或者說,符合一定條件的點的全體所組成的集合,叫做滿足該條件的點的軌跡、

  軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)

  【軌跡方程】就是與幾何軌跡對應的代數(shù)描述。

  一、求動點的軌跡方程的基本步驟

 、、建立適當?shù)淖鴺讼担O出動點M的坐標;

 、、寫出點M的集合;

 、、列出方程=0;

 、础⒒喎匠虨樽詈喰问;

 、怠z驗。

  二、求動點的軌跡方程的常用方法:

  求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數(shù)法和交軌法等。

 、薄⒅弊g法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

 、、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

 、场⑾嚓P點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的.曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

 、、參數(shù)法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數(shù)t的關系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

  ⒌、交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  直譯法:求動點軌跡方程的一般步驟

 、俳ㄏ怠⑦m當?shù)淖鴺讼担?/p>

  ②設點——設軌跡上的任一點P(x,y);

 、哿惺健谐鰟狱cp所滿足的關系式;

 、艽鷵Q——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;

 、葑C明——證明所求方程即為符合條件的動點軌跡方程。

數(shù)學高考精選知識點歸納5

  1、數(shù)列的定義、分類與通項公式

  (1)數(shù)列的定義:

 、贁(shù)列:按照一定順序排列的一列數(shù)、

 、跀(shù)列的項:數(shù)列中的每一個數(shù)、

 。2)數(shù)列的分類:

  分類標準類型滿足條件

  項數(shù)有窮數(shù)列項數(shù)有限

  無窮數(shù)列項數(shù)無限

  項與項間的大小關系遞增數(shù)列an+1>an其中n∈N

  遞減數(shù)列an+1

  常數(shù)列an+1=an

 。3)數(shù)列的通項公式:

  如果數(shù)列{an}的第n項與序號n之間的關系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的通項公式、

  2、數(shù)列的遞推公式

  如果已知數(shù)列{an}的首項(或前幾項),且任一項an與它的前一項an—1(n≥2)(或前幾項)間的關系可用一個公式來表示,那么這個公式叫數(shù)列的遞推公式、

  3、對數(shù)列概念的理解

 。1)數(shù)列是按一定“順序”排列的一列數(shù),一個數(shù)列不僅與構成它的“數(shù)”有關,而且還與這些“數(shù)”的排列順序有關,這有別于集合中元素的無序性、因此,若組成兩個數(shù)列的數(shù)相同而排列次序不同,那么它們就是不同的兩個數(shù)列、

 。2)數(shù)列中的數(shù)可以重復出現(xiàn),而集合中的元素不能重復出現(xiàn),這也是數(shù)列與數(shù)集的區(qū)別、

  4、數(shù)列的函數(shù)特征

  數(shù)列是一個定義域為正整數(shù)集N_或它的有限子集{1,2,3,…,n})的特殊函數(shù),數(shù)列的通項公式也就是相應的函數(shù)解析式,即f(n)=an(n∈N_、