亚欧洲精品在线观看,窝窝影院午夜看片,久久国产成人午夜av影院宅,午夜91,免费国产人成网站,ts在线视频,欧美激情在线一区

數(shù)學(xué) 百文網(wǎng)手機(jī)站

高一數(shù)學(xué):二次函數(shù)知識(shí)點(diǎn)歸納

時(shí)間:2022-01-19 10:22:27 數(shù)學(xué) 我要投稿

高一數(shù)學(xué):二次函數(shù)知識(shí)點(diǎn)歸納

  數(shù)學(xué),是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門(mén)學(xué)科。下面是小編收集整理的高一數(shù)學(xué):二次函數(shù)知識(shí)點(diǎn)歸納,僅供參考,大家一起來(lái)看看吧。

高一數(shù)學(xué):二次函數(shù)知識(shí)點(diǎn)歸納

  高一數(shù)學(xué):二次函數(shù)知識(shí)點(diǎn)歸納 1

  I.定義與定義表達(dá)式

  一般地,自變量x和因變量y之間存在如下關(guān)系:

  y=ax^2+bx+c

  (a,b,c為常數(shù),a0,且a決定函數(shù)的開(kāi)口方向,a0時(shí),開(kāi)口方向向上,a0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)

  則稱(chēng)y為x的二次函數(shù)。

  二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

  II.二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a0)

  頂點(diǎn)式:y=a(x-h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線(xiàn)]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-bb^2-4ac)/2a

  III.二次函數(shù)的圖像

  在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,

  可以看出,二次函數(shù)的圖像是一條拋物線(xiàn)。

  IV.拋物線(xiàn)的性質(zhì)

  1.拋物線(xiàn)是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線(xiàn)

  x=-b/2a。

  對(duì)稱(chēng)軸與拋物線(xiàn)唯一的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。

  特別地,當(dāng)b=0時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸是y軸(即直線(xiàn)x=0)

  2.拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標(biāo)為

  P(-b/2a,(4ac-b^2)/4a)

  當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)=b^2-4ac=0時(shí),P在x軸上。

  3.二次項(xiàng)系數(shù)a決定拋物線(xiàn)的開(kāi)口方向和大小。

  當(dāng)a0時(shí),拋物線(xiàn)向上開(kāi)口;當(dāng)a0時(shí),拋物線(xiàn)向下開(kāi)口。

  |a|越大,則拋物線(xiàn)的開(kāi)口越小。

  4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置。

  當(dāng)a與b同號(hào)時(shí)(即ab0),對(duì)稱(chēng)軸在y軸左;

  當(dāng)a與b異號(hào)時(shí)(即ab0),對(duì)稱(chēng)軸在y軸右。

  5.常數(shù)項(xiàng)c決定拋物線(xiàn)與y軸交點(diǎn)。

  拋物線(xiàn)與y軸交于(0,c)

  6.拋物線(xiàn)與x軸交點(diǎn)個(gè)數(shù)

  =b^2-4ac0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。

  =b^2-4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。

  =b^2-4ac0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。X的取值是虛數(shù)(x=-bb^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

  V.二次函數(shù)與一元二次方程

  特別地,二次函數(shù)(以下稱(chēng)函數(shù))y=ax^2+bx+c,

  當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱(chēng)方程),

  即ax^2+bx+c=0

  此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。

  函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

  1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱(chēng)軸如下表:

  解析式

  頂點(diǎn)坐標(biāo)

  對(duì)稱(chēng)軸

  y=ax^2

  (0,0)

  x=0

  y=a(x-h)^2

  (h,0)

  x=h

  y=a(x-h)^2+k

  (h,k)

  x=h

  y=ax^2+bx+c

  (-b/2a,[4ac-b^2]/4a)

  x=-b/2a

  當(dāng)h0時(shí),y=a(x-h)^2的圖象可由拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位得到,

  當(dāng)h0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.

  當(dāng)h0,k0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

  當(dāng)h0,k0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當(dāng)h0,k0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當(dāng)h0,k0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  因此,研究拋物線(xiàn)y=ax^2+bx+c(a0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸,拋物線(xiàn)的大體位置就很清楚了.這給畫(huà)圖象提供了方便.

  2.拋物線(xiàn)y=ax^2+bx+c(a0)的圖象:當(dāng)a0時(shí),開(kāi)口向上,當(dāng)a0時(shí)開(kāi)口向下,對(duì)稱(chēng)軸是直線(xiàn)x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

  3.拋物線(xiàn)y=ax^2+bx+c(a0),若a0,當(dāng)x-b/2a時(shí),y隨x的增大而減小;當(dāng)x-b/2a時(shí),y隨x的增大而增大.若a0,當(dāng)x-b/2a時(shí),y隨x的.增大而增大;當(dāng)x-b/2a時(shí),y隨x的增大而減小.

  4.拋物線(xiàn)y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

  (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

  (2)當(dāng)△=b^2-4ac0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a0)的兩根.這兩點(diǎn)間的距離AB=|x?-x?|

  當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);

  當(dāng)△0.圖象與x軸沒(méi)有交點(diǎn).當(dāng)a0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y當(dāng)a0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y0.

  5.拋物線(xiàn)y=ax^2+bx+c的最值:如果a0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.

  頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.

  6.用待定系數(shù)法求二次函數(shù)的解析式

  (1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:

  y=ax^2+bx+c(a0).

  (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ(chēng)軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a0).

  (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a0).

  7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn)。

  高一數(shù)學(xué):二次函數(shù)知識(shí)點(diǎn)歸納 2

  1、二次函數(shù)的概念

  1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類(lèi)似,二次項(xiàng)系數(shù),而可以為零。二次函數(shù)的定義域是全體實(shí)數(shù)。

  2.二次函數(shù)的結(jié)構(gòu)特征:

 、诺忍(hào)左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2。

  ⑵是常數(shù),是二次項(xiàng)系數(shù),是一次項(xiàng)系數(shù),是常數(shù)項(xiàng)。

  2、數(shù)學(xué)二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)。

  頂點(diǎn)式:y=a(x-h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]。

  交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線(xiàn)]。

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a。

  3、二次函數(shù)的性質(zhì)

  1.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。

  2.k,b與函數(shù)圖像所在象限:

  當(dāng)k>0時(shí),直線(xiàn)必通過(guò)一、三象限,y隨x的增大而增大;

  當(dāng)k<0時(shí),直線(xiàn)必通過(guò)二、四象限,y隨x的增大而減小。

  當(dāng)b>0時(shí),直線(xiàn)必通過(guò)一、二象限;

  當(dāng)b=0時(shí),直線(xiàn)通過(guò)原點(diǎn);

  當(dāng)b<0時(shí),直線(xiàn)必通過(guò)三、四象限。

  特別地,當(dāng)b=O時(shí),直線(xiàn)通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

  這時(shí),當(dāng)k>0時(shí),直線(xiàn)只通過(guò)一、三象限;當(dāng)k<0時(shí),直線(xiàn)只通過(guò)二、四象限。

  4、初三數(shù)學(xué)二次函數(shù)圖像

  對(duì)于一般式:

 、賧=ax2+bx+c與y=ax2-bx+c兩圖像關(guān)于y軸對(duì)稱(chēng)。

  ②y=ax2+bx+c與y=-ax2-bx-c兩圖像關(guān)于x軸對(duì)稱(chēng)。

 、踶=ax2+bx+c與y=-ax2-bx+c-b2/2a關(guān)于頂點(diǎn)對(duì)稱(chēng)。

 、躽=ax2+bx+c與y=-ax2+bx-c關(guān)于原點(diǎn)中心對(duì)稱(chēng)。(即繞原點(diǎn)旋轉(zhuǎn)180度后得到的圖形)

  對(duì)于頂點(diǎn)式:

 、賧=a(x-h)2+k與y=a(x+h)2+k兩圖像關(guān)于y軸對(duì)稱(chēng),即頂點(diǎn)(h,k)和(-h,k)關(guān)于y軸對(duì)稱(chēng),橫坐標(biāo)相反、縱坐標(biāo)相同。

 、趛=a(x-h)2+k與y=-a(x-h)2-k兩圖像關(guān)于x軸對(duì)稱(chēng),即頂點(diǎn)(h,k)和(h,-k)關(guān)于x軸對(duì)稱(chēng),橫坐標(biāo)相同、縱坐標(biāo)相反。

 、踶=a(x-h)2+k與y=-a(x-h)2+k關(guān)于頂點(diǎn)對(duì)稱(chēng),即頂點(diǎn)(h,k)和(h,k)相同,開(kāi)口方向相反。

  ④y=a(x-h)2+k與y=-a(x+h)2-k關(guān)于原點(diǎn)對(duì)稱(chēng),即頂點(diǎn)(h,k)和(-h,-k)關(guān)于原點(diǎn)對(duì)稱(chēng),橫坐標(biāo)、縱坐標(biāo)都相反。(其實(shí)①③④就是對(duì)f(x)來(lái)說(shuō)f(-x),-f(x),-f(-x)的情況)

  數(shù)學(xué)的學(xué)習(xí)方法和技巧總結(jié)

  多做

  主要是指做習(xí)題,學(xué)數(shù)學(xué)一定要做習(xí)題,并且應(yīng)該適當(dāng)?shù)囟嘧鲂。做?xí)題的目的首先是熟練和鞏固學(xué)習(xí)的知識(shí);其次是初步啟發(fā)靈活應(yīng)用知識(shí)和培養(yǎng)獨(dú)立思考的能力;第三是融會(huì)貫通,把不同內(nèi)容的數(shù)學(xué)知識(shí)溝通起來(lái)。在做習(xí)題時(shí),要認(rèn)真審題,認(rèn)真思考,應(yīng)該用什么方法做?能否有簡(jiǎn)便解法?做到邊做邊思考邊總結(jié),通過(guò)練習(xí)加深對(duì)知識(shí)的理解。

  必須要有錯(cuò)題本

  說(shuō)到錯(cuò)題本不少同學(xué)都覺(jué)得自己的記憶力好,不需要錯(cuò)題本就能記住,這是一種“錯(cuò)覺(jué)”,每個(gè)人都有這種感覺(jué),等到題目增多,學(xué)習(xí)內(nèi)容加深,這時(shí)就會(huì)發(fā)現(xiàn)自己力不從心了。

  錯(cuò)題本能夠隨時(shí)記錄自己的知識(shí)短板,幫助強(qiáng)化知識(shí)體系,有助于提升學(xué)習(xí)效率。有很多學(xué)霸都是因?yàn)榉e極使用了錯(cuò)題本,而考取了高分。

  數(shù)學(xué)有理數(shù)的概念

  (1)正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱(chēng)為整數(shù)(0和正整數(shù)統(tǒng)稱(chēng)為自然數(shù))

  (2)正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)為分?jǐn)?shù)

  (3)正整數(shù),0,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù)都可以寫(xiě)成分?jǐn)?shù)的形式,這樣的數(shù)稱(chēng)為有理數(shù)。

  理解:只有能化成分?jǐn)?shù)的數(shù)才是有理數(shù)。

 、佴惺菬o(wú)限不循環(huán)小數(shù),不能寫(xiě)成分?jǐn)?shù)形式,不是有理數(shù)。

  ②有限小數(shù)和無(wú)限循環(huán)小數(shù)都可化成分?jǐn)?shù),都是有理數(shù)。

  ③整數(shù)也能化成分?jǐn)?shù),也是有理數(shù)

  注意:引入負(fù)數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴(kuò)大了,像—2,—4,—6,—8也是偶數(shù),—1,—3,—5也是奇數(shù)。

【高一數(shù)學(xué):二次函數(shù)知識(shí)點(diǎn)歸納】相關(guān)文章:

二次函數(shù)的初三數(shù)學(xué)知識(shí)點(diǎn)歸納05-20

數(shù)學(xué)《二次函數(shù)》優(yōu)秀教案12-26

高一數(shù)學(xué)函數(shù)知識(shí)點(diǎn)9篇01-26

數(shù)學(xué)九年級(jí)下冊(cè)二次函數(shù)知識(shí)點(diǎn)11-29

高一數(shù)學(xué)知識(shí)點(diǎn)最新歸納01-09

高一數(shù)學(xué)公式知識(shí)點(diǎn)歸納12-07

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納10-08

高一數(shù)學(xué)必修五知識(shí)點(diǎn)歸納08-13

高一數(shù)學(xué)必修二知識(shí)點(diǎn)歸納08-05

初三數(shù)學(xué)二次根式的知識(shí)點(diǎn)歸納10-04