考研數(shù)學(xué)高數(shù)考點(diǎn)的預(yù)測(cè)
極限的計(jì)算是高等數(shù)學(xué)重點(diǎn)難點(diǎn),我們?cè)趶?fù)習(xí)的時(shí)候,一定要抓住重點(diǎn)。小編為大家精心準(zhǔn)備了考研數(shù)學(xué)高數(shù)考點(diǎn)的預(yù)料,歡迎大家前來閱讀。
考研數(shù)學(xué)之高數(shù)考點(diǎn)預(yù)測(cè):極限的計(jì)算
1、等價(jià)無(wú)窮小的轉(zhuǎn)化,(只能在乘除時(shí)候使用,但是不是說一定在加減時(shí)候不能用,前提是必須證明拆分后極限依然存在,e的X次方-1或者(1+x)的a次方-1等價(jià)于Ax等等。全部熟記(x趨近無(wú)窮的時(shí)候還原成無(wú)窮小)。
2、洛必達(dá)法則(大題目有時(shí)候會(huì)有暗示要你使用這個(gè)方法)。首先他的使用有嚴(yán)格的使用前提!必須是X趨近而不是N趨近!(所以面對(duì)數(shù)列極限時(shí)候先要轉(zhuǎn)化成求x趨近情況下的極限,當(dāng)然n趨近是x趨近的一種情況而已,是必要條件(還有一點(diǎn)數(shù)列極限的n當(dāng)然是趨近于正無(wú)窮的,不可能是負(fù)無(wú)窮!)必須是函數(shù)的導(dǎo)數(shù)要存在!(假如告訴你g(x),沒告訴你是否可導(dǎo),直接用,無(wú)疑于找死!!)必須是0比0無(wú)窮大比無(wú)窮大!當(dāng)然還要注意分母不能為0。洛必達(dá)法則分為3種情況:0比0無(wú)窮比無(wú)窮時(shí)候直接用;0乘以無(wú)窮,無(wú)窮減去無(wú)窮(應(yīng)為無(wú)窮大于無(wú)窮小成倒數(shù)的關(guān)系)所以無(wú)窮大都寫成了無(wú)窮小的倒數(shù)形式了。通項(xiàng)之后這樣就能變成第一種的形式了;0的0次方,1的無(wú)窮次方,無(wú)窮的0次方。對(duì)于(指數(shù)冪數(shù))方程方法主要是取指數(shù)還取對(duì)數(shù)的方法,這樣就能把冪上的函數(shù)移下來了,就是寫成0與無(wú)窮的形式了,(這就是為什么只有3種形式的原因,LNx兩端都趨近于無(wú)窮時(shí)候他的冪移下來趨近于0,當(dāng)他的冪移下來趨近于無(wú)窮的時(shí)候,LNX趨近于0)。
3、泰勒公式(含有e的x次方的時(shí)候,尤其是含有正余弦的加減的時(shí)候要特變注意!)E的x展開sina,展開cosa,展開ln1+x,對(duì)題目簡(jiǎn)化有很好幫助。
4、面對(duì)無(wú)窮大比上無(wú)窮大形式的解決辦法,取大頭原則最大項(xiàng)除分子分母!!!看上去復(fù)雜,處理很簡(jiǎn)單!
5、無(wú)窮小于有界函數(shù)的處理辦法,面對(duì)復(fù)雜函數(shù)時(shí)候,尤其是正余弦的復(fù)雜函數(shù)與其他函數(shù)相乘的時(shí)候,一定要注意這個(gè)方法。面對(duì)非常復(fù)雜的函數(shù),可能只需要知道它的范圍結(jié)果就出來了!
6、夾逼定理(主要對(duì)付的是數(shù)列極限!)這個(gè)主要是看見極限中的函數(shù)是方程相除的形式,放縮和擴(kuò)大。
7、等比等差數(shù)列公式應(yīng)用(對(duì)付數(shù)列極限)(q絕對(duì)值符號(hào)要小于1)。
8、各項(xiàng)的拆分相加(來消掉中間的大多數(shù))(對(duì)付的還是數(shù)列極限)可以使用待定系數(shù)法來拆分化簡(jiǎn)函數(shù)。
9、求左右極限的方式(對(duì)付數(shù)列極限)例如知道Xn與Xn+1的關(guān)系,已知Xn的極限存在的情況下,xn的極限與xn+1的極限時(shí)一樣的,因?yàn)闃O限去掉有限項(xiàng)目極限值不變化。
10、兩個(gè)重要極限的應(yīng)用。這兩個(gè)很重要!對(duì)第一個(gè)而言是X趨近0時(shí)候的'sinx與x比值。第2個(gè)就如果x趨近無(wú)窮大,無(wú)窮小都有對(duì)有對(duì)應(yīng)的形式(第2個(gè)實(shí)際上是用于函數(shù)是1的無(wú)窮的形式)(當(dāng)?shù)讛?shù)是1的時(shí)候要特別注意可能是用地兩個(gè)重要極限)
11、還有個(gè)方法,非常方便的方法,就是當(dāng)趨近于無(wú)窮大時(shí)候,不同函數(shù)趨近于無(wú)窮的速度是不一樣的!x的x次方快于x!快于指數(shù)函數(shù),快于冪數(shù)函數(shù),快于對(duì)數(shù)函數(shù)(畫圖也能看出速率的快慢)!!當(dāng)x趨近無(wú)窮的時(shí)候,他們的比值的極限一眼就能看出來了。
12、換元法是一種技巧,不會(huì)對(duì)單一道題目而言就只需要換元,而是換元會(huì)夾雜其中。
13、假如要算的話四則運(yùn)算法則也算一種方法,當(dāng)然也是夾雜其中的。
14、還有對(duì)付數(shù)列極限的一種方法,就是當(dāng)你面對(duì)題目實(shí)在是沒有辦法,走投無(wú)路的時(shí)候可以考慮轉(zhuǎn)化為定積分。一般是從0到1的形式。
15、單調(diào)有界的性質(zhì),對(duì)付遞推數(shù)列時(shí)候使用證明單調(diào)性!
16、直接使用求導(dǎo)數(shù)的定義來求極限,(一般都是x趨近于0時(shí)候,在分子上f(x加減某個(gè)值)加減f(x)的形式,看見了要特別注意)(當(dāng)題目中告訴你F(0)=0時(shí)候f(0)導(dǎo)數(shù)=0的時(shí)候,就是暗示你一定要用導(dǎo)數(shù)定義!
函數(shù)是表皮,函數(shù)的性質(zhì)也體現(xiàn)在積分微分中。例如他的奇偶性質(zhì)他的周期性。還有復(fù)合函數(shù)的性質(zhì):
1、奇偶性,奇函數(shù)關(guān)于原點(diǎn)對(duì)稱偶函數(shù)關(guān)于軸對(duì)稱偶函數(shù)左右2邊的圖形一樣(奇函數(shù)相加為0);
2、周期性也可用在導(dǎo)數(shù)中在定積分中也有應(yīng)用定積分中的函數(shù)是周期函數(shù)積分的周期和他的一致;
3、復(fù)合函數(shù)之間是自變量與應(yīng)變量互換的關(guān)系;
4、還有個(gè)單調(diào)性。(再求0點(diǎn)的時(shí)候可能用到這個(gè)性質(zhì)!(可以導(dǎo)的函數(shù)的單調(diào)性和他的導(dǎo)數(shù)正負(fù)相關(guān)):o再就是總結(jié)一下間斷點(diǎn)的問題(應(yīng)為一般函數(shù)都是連續(xù)的所以間斷點(diǎn)是對(duì)于間斷函數(shù)而言的)間斷點(diǎn)分為第一類和第二類剪斷點(diǎn)。第一類是左右極限都存在的(左右極限存在但是不等跳躍的的間斷點(diǎn)或者左右極限存在相等但是不等于函數(shù)在這點(diǎn)的值可取的間斷點(diǎn);第二類間斷點(diǎn)是震蕩間斷點(diǎn)或者是無(wú)窮極端點(diǎn)(這也說明極限即使不存在也有可能是有界的)。
考研數(shù)學(xué)易錯(cuò)點(diǎn)分析
高等數(shù)學(xué)
1.函數(shù)在一點(diǎn)處極限存在,連續(xù),可導(dǎo),可微之間關(guān)系。對(duì)于一元函數(shù)函數(shù)連續(xù)是函數(shù)極限存在的充分條件。若函數(shù)在某點(diǎn)連續(xù),則該函數(shù)在該點(diǎn)必有極限。若函數(shù)在某點(diǎn)不連續(xù),則該函數(shù)在該點(diǎn)不一定無(wú)極限。若函數(shù)在某點(diǎn)可導(dǎo),則函數(shù)在該點(diǎn)一定連續(xù)。但是如果函數(shù)不可導(dǎo),不能推出函數(shù)在該點(diǎn)一定不連續(xù),可導(dǎo)與可微等價(jià)。而對(duì)于二元函數(shù),只能又可微推連續(xù)和可導(dǎo)(偏導(dǎo)都存在),其余都不成立。
2.基本初等函數(shù)與初等函數(shù)的連續(xù)性:基本初等函數(shù)在其定義域內(nèi)是連續(xù)的,而初等函數(shù)在其定義區(qū)間上是連續(xù)的。
3.極值點(diǎn),拐點(diǎn)。駐點(diǎn)與極值點(diǎn)的關(guān)系:在一元函數(shù)中,駐點(diǎn)可能是極值點(diǎn),也可能不是極值點(diǎn),而函數(shù)的極值點(diǎn)必是函數(shù)的駐點(diǎn)或?qū)?shù)不存在的點(diǎn)。注意極值點(diǎn)和拐點(diǎn)的定義一充、二充、和必要條件。
4.夾逼定理和用定積分定義求極限。這兩種方法都可以用來求和式極限,注意方法的選擇。還有夾逼定理的應(yīng)用,特別是無(wú)窮小量與有界量之積仍是無(wú)窮小量。
5.可導(dǎo)是對(duì)定義域內(nèi)的點(diǎn)而言的,處處可導(dǎo)則存在導(dǎo)函數(shù),只要一個(gè)函數(shù)在定義域內(nèi)某一點(diǎn)不可導(dǎo),那么就不存在導(dǎo)函數(shù),即使該函數(shù)在其它各處均可導(dǎo)。
6.泰勒中值定理的應(yīng)用,可用于計(jì)算極限以及證明。
7.比較積分的大小。定積分比較定理的應(yīng)用(常用畫圖法),多重積分的比較,特別注意第二類曲線積分,曲面積分不可直接比較大小。
8.抽象型的多元函數(shù)求導(dǎo),反函數(shù)求導(dǎo)(高階),參數(shù)方程的二階導(dǎo),以及與變限積分函數(shù)結(jié)合的求導(dǎo)
9.廣義積分和級(jí)數(shù)的斂散性的判斷。
10.介值定理和零點(diǎn)定理的應(yīng)用。關(guān)鍵在于觀察和變換所要證明等式的形式,構(gòu)造輔助函數(shù)。
11.保號(hào)性。極限的性質(zhì)中最重要的就是保號(hào)性,注意保號(hào)性的兩種形式以及成立的條件。
12.第二類曲線積分和第二類曲面積分。在求解的過程中一般會(huì)使用格林公式和高斯公式,大部分同學(xué)都會(huì)把精力關(guān)注在是否閉合,偏導(dǎo)是否連續(xù)上,而忘記了第三個(gè)條件——方向,要引起注意。
線性代數(shù)
1、行列式的計(jì)算。行列式直接考察的概率不高,但行列式是線代的工具,判定系數(shù)矩陣為方陣的線性方程組解的情況及特征值的計(jì)算都會(huì)用到行列式的計(jì)算,故要引起重視。
2、矩陣的變換。矩陣是線代的研究對(duì)象,線性方程組、特征值與特征向量、相似對(duì)角化,二次型,其實(shí)都是在研究矩陣。一定要注意在化階梯型時(shí)只能對(duì)矩陣做行變換,不可做列變換變換。
3、向量和秩。向量和秩比較抽象,也是線代學(xué)習(xí)的重點(diǎn)和難點(diǎn),研究線性方程組解的情況其實(shí)就是在研究系數(shù)矩陣的秩,也是在研究把系數(shù)矩陣按列分塊得到的向量組的秩。
4、線性方程組的解。線性方程組是每年的必看知識(shí)點(diǎn),要熟練掌握線性方程組解的結(jié)構(gòu)問題,核心是理解基礎(chǔ)解系,要能夠掌握具體方程組的數(shù)列方法,更要能熟練解決抽象型方程組,一般會(huì)轉(zhuǎn)化為系數(shù)矩陣的秩或者基礎(chǔ)解,然后解決問題。
5、特征值與特征向量。特征值與特征向量起到承前啟后的作用,一特征值對(duì)應(yīng)的特征向量其實(shí)就是其對(duì)應(yīng)矩陣作為系數(shù)矩陣的齊次線性方程組的基礎(chǔ)解系,其重要應(yīng)用就是相似對(duì)角化及正交相似對(duì)角化,是后面二次型的基礎(chǔ)。
6、相似對(duì)角化,包括相似對(duì)角化及正交相似對(duì)角化。要會(huì)判斷是否可以相似對(duì)角化,及正交相似對(duì)角化時(shí),怎么施密特正交化和單位化。
7、二次型。二次型是線代的一個(gè)綜合型章節(jié),會(huì)用到前面的很多知識(shí)。要熟練掌握用正交變換化二次型為標(biāo)準(zhǔn)形,二次型正定的判定,及慣性指數(shù)。
8、矩陣等價(jià)及向量組等價(jià)的充要條件,矩陣等價(jià),相似,合同的條件。
概率論與數(shù)理統(tǒng)計(jì)
1、非等可能 與 等可能。若一次隨機(jī)實(shí)驗(yàn)中可能出現(xiàn)的結(jié)果有N個(gè),且所有結(jié)果出現(xiàn)的可能性都相等,則每一個(gè)基本事件的概率都是1/N;若其中某個(gè)事件A包含的結(jié)果有M個(gè),則事件A的概率為M/N。
2、互斥與對(duì)立 對(duì)立一定互斥,但互斥不一定對(duì)立。若A,B互斥,則P(A+B)=P(A)+P(B),若A,B對(duì)立,則滿足(1)A∩B=空集;(2)P(A+B)=1。
3、互斥與獨(dú)立。若A,B互斥,則P(A+B)=P(A)+P(B),若A,B獨(dú)立,則P(AB)=P(A)P(B);概率為0或者1的事件與任何事件都獨(dú)立
4、排列與組合。排列與順序有關(guān),組合與順序無(wú)關(guān),同類相乘有序,不同類相乘無(wú)序。
5、不可能事件與概率為零的隨機(jī)事件。 不可能事件的概率一定為零,但概率為零的隨機(jī)事件不一定是不可能事件,如連續(xù)型隨機(jī)變量在任何一點(diǎn)的概率都為0。
6、必然事件與概率為1的事件。必然事件的概率一定為1,但概率為1的隨機(jī)事件不一定是必然事件。對(duì)于一般情形,由P(A)=P(B)同樣不能推得隨機(jī)事件A等于隨機(jī)事件B。
7、條件概率。P(A|B)表示事件B發(fā)生條件下事件A發(fā)生的概率。若“B是A的子集”,則P(A|B)=1,但P(B|A)=P(B)是不對(duì)的,只有當(dāng)P(A)=1時(shí)才成立。在求二維連續(xù)型隨機(jī)變量的條件概率密度函數(shù)時(shí),一定是在邊緣概率密度函數(shù)大于零時(shí),才可使用“條件=聯(lián)合/邊緣”;反過來用此公式求聯(lián)合概率密度函數(shù)時(shí),也要保證邊緣概率密度函數(shù)大于零。
8、隨機(jī)變量概率密度函數(shù)。對(duì)于一維連續(xù)型隨機(jī)變量,用分布函數(shù)法,先討論概率為0和1的區(qū)間,然后反解,再討論,最后求導(dǎo)。對(duì)于二維隨機(jī)變量,若是連續(xù)型和離散型,用全概率公式,若是連續(xù)型和連續(xù)型同樣用分布函數(shù)法,若隨機(jī)變量是Z=X+Y型,用卷積公式。
考研數(shù)學(xué)沖刺高數(shù)證明題如何求證
☆題目篇☆
考試難題一般出現(xiàn)在高等數(shù)學(xué),對(duì)高等數(shù)學(xué)一定要抓住重難點(diǎn)進(jìn)行復(fù)習(xí)。高等數(shù)學(xué)題目中比較困難的是證明題,在整個(gè)高等數(shù)學(xué),容易出證明題的地方如下:
▶數(shù)列極限的證明
數(shù)列極限的證明是數(shù)一、二的重點(diǎn),特別是數(shù)二最近幾年考的非常頻繁,已經(jīng)考過好幾次大的證明題,一般大題中涉及到數(shù)列極限的證明,用到的方法是單調(diào)有界準(zhǔn)則。
▶微分中值定理的相關(guān)證明
微分中值定理的證明題歷來是考研的重難點(diǎn),其考試特點(diǎn)是綜合性強(qiáng),涉及到知識(shí)面廣,涉及到中值的等式主要是三類定理:
1.零點(diǎn)定理和介質(zhì)定理;
2.微分中值定理;
包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導(dǎo)數(shù)的相關(guān)問題,考查頻率底,所以以前兩個(gè)定理為主。
3.微分中值定理
積分中值定理的作用是為了去掉積分符號(hào)。
在考查的時(shí)候,一般會(huì)把三類定理兩兩結(jié)合起來進(jìn)行考查,所以要總結(jié)到現(xiàn)在為止,所考查的題型。
▶方程根的問題
包括方程根唯一和方程根的個(gè)數(shù)的討論。
▶不等式的證明
▶定積分等式和不等式的證明
主要涉及的方法有微分學(xué)的方法:常數(shù)變異法;積分學(xué)的方法:換元法和分布積分法。
▶積分與路徑無(wú)關(guān)的五個(gè)等價(jià)條件
這一部分是數(shù)一的考試重點(diǎn),最近幾年沒設(shè)計(jì)到,所以要重點(diǎn)關(guān)注。
☆方法篇☆
以上是容易出證明題的地方,同學(xué)們?cè)趶?fù)習(xí)的時(shí)候重點(diǎn)歸納這類題目的解法。那么,遇到這類的證明題,我們應(yīng)該用什么方法解題呢?
▶結(jié)合幾何意義記住基本原理
重要的定理主要包括零點(diǎn)存在定理、中值定理、泰勒公式、極限存在的兩個(gè)準(zhǔn)則等基本原理,包括條件及結(jié)論。
知道基本原理是證明的基礎(chǔ),知道的程度(即就是對(duì)定理理解的深入程度)不同會(huì)導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。
因?yàn)閿?shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個(gè)題目非常簡(jiǎn)單,只用了極限存在的兩個(gè)準(zhǔn)則之一:?jiǎn)握{(diào)有界數(shù)列必有極限。只要知道這個(gè)準(zhǔn)則,該問題就能輕松解決,因?yàn)閷?duì)于該題中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗(yàn)證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。
▶借助幾何意義尋求證明思路
一個(gè)證明題,大多時(shí)候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個(gè)關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個(gè)函數(shù)除兩個(gè)端點(diǎn)外還有一個(gè)函數(shù)值相等的點(diǎn),那就是兩個(gè)函數(shù)分別取最大值的點(diǎn)(正確審題:兩個(gè)函數(shù)取得最大值的點(diǎn)不一定是同一個(gè)點(diǎn))之間的一個(gè)點(diǎn)。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個(gè)零點(diǎn),兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。
再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點(diǎn)存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個(gè)函數(shù)圖形有交點(diǎn),這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個(gè)端點(diǎn)處大小關(guān)系恰好相反,也就是差函數(shù)在兩個(gè)端點(diǎn)的值是異號(hào)的,零點(diǎn)存在定理保證了區(qū)間內(nèi)有零點(diǎn),這就證得所需結(jié)果。如果第二步實(shí)在無(wú)法完滿解決問題的話,轉(zhuǎn)第三步。
▶逆推法
從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。
在判定函數(shù)的單調(diào)性時(shí)需借助導(dǎo)數(shù)符號(hào)與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號(hào)就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時(shí)需先用二階導(dǎo)數(shù)的符號(hào)判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號(hào)判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè)F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。
對(duì)于那些經(jīng)常使用如上方法的考生來說,利用三步走就能輕松收獲數(shù)學(xué)證明的12分,但對(duì)于從心理上就不自信能解決證明題的考生來說,卻常常輕易丟失12分,后一部分同學(xué)請(qǐng)按“證明三步走”來建立自信心,以阻止考試分?jǐn)?shù)的白白流失。
【考研數(shù)學(xué)高數(shù)考點(diǎn)的預(yù)測(cè)】相關(guān)文章:
考研數(shù)學(xué)高數(shù)有哪些考點(diǎn)12-15
考研高數(shù)知識(shí)考點(diǎn)指南攻略11-06
考研數(shù)學(xué)高數(shù)填空題的考點(diǎn)解析12-04
考研向量的數(shù)學(xué)定義的考點(diǎn)預(yù)測(cè)12-15
考研數(shù)學(xué)高數(shù)復(fù)習(xí)的要點(diǎn)11-14
考研數(shù)學(xué)高數(shù)復(fù)習(xí)的技巧12-12
考研數(shù)學(xué)高數(shù)的復(fù)習(xí)重點(diǎn)12-21