亚欧洲精品在线观看,窝窝影院午夜看片,久久国产成人午夜av影院宅,午夜91,免费国产人成网站,ts在线视频,欧美激情在线一区

數(shù)學(xué) 百文網(wǎng)手機(jī)站

導(dǎo)數(shù)的概念是什么及幾何意義

時間:2022-01-20 15:45:58 數(shù)學(xué) 我要投稿

導(dǎo)數(shù)的概念是什么及幾何意義

  我們專升本是以計算為主的,下面讓我們一起學(xué)習(xí)導(dǎo)數(shù)定義以及幾何意義在考試中的考查內(nèi)容及相關(guān)題型的解法吧!以下是小編整理的導(dǎo)數(shù)的概念是什么及幾何意義,供大家參考借鑒,希望可以幫助到有需要的朋友。

  導(dǎo)數(shù)的概念

  導(dǎo)數(shù)(Derivative)是微積分中的重要基礎(chǔ)概念。當(dāng)函數(shù)y=f(x)的自變量x在一點x0上產(chǎn)生一個增量Δx時,函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導(dǎo)數(shù),記作f'(x0)或df(x0)/dx。

  導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個函數(shù)在某一點的導(dǎo)數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導(dǎo)數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。導(dǎo)數(shù)的本質(zhì)是通過極限的`概念對函數(shù)進(jìn)行局部的線性逼近。例如在運動學(xué)中,物體的位移對于時間的導(dǎo)數(shù)就是物體的瞬時速度。

  不是所有的函數(shù)都有導(dǎo)數(shù),一個函數(shù)也不一定在所有的點上都有導(dǎo)數(shù)。若某函數(shù)在某一點導(dǎo)數(shù)存在,則稱其在這一點可導(dǎo),否則稱為不可導(dǎo)。然而,可導(dǎo)的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導(dǎo)。

  對于可導(dǎo)的函數(shù)f(x),xf'(x)也是一個函數(shù),稱作f(x)的導(dǎo)函數(shù)(簡稱導(dǎo)數(shù))。尋找已知的函數(shù)在某點的導(dǎo)數(shù)或其導(dǎo)函數(shù)的過程稱為求導(dǎo)。實質(zhì)上,求導(dǎo)就是一個求極限的過程,導(dǎo)數(shù)的四則運算法則也來源于極限的四則運算法則。反之,已知導(dǎo)函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了求原函數(shù)與積分是等價的。求導(dǎo)和積分是一對互逆的操作,它們都是微積分學(xué)中最為基礎(chǔ)的概念。

  導(dǎo)數(shù)的求導(dǎo)法則

  由基本函數(shù)的和、差、積、商或相互復(fù)合構(gòu)成的函數(shù)的導(dǎo)函數(shù)則可以通過函數(shù)的求導(dǎo)法則來推導(dǎo);镜那髮(dǎo)法則如下:

  1、求導(dǎo)的線性:對函數(shù)的線性組合求導(dǎo),等于先對其中每個部分求導(dǎo)后再取線性組合(即①式)。

  2、兩個函數(shù)的乘積的導(dǎo)函數(shù):一導(dǎo)乘二+一乘二導(dǎo)(即②式)。

  3、兩個函數(shù)的商的導(dǎo)函數(shù)也是一個分式:(子導(dǎo)乘母-子乘母導(dǎo))除以母平方(即③式)。

  4、如果有復(fù)合函數(shù),則用鏈?zhǔn)椒▌t求導(dǎo)。

  導(dǎo)數(shù)的歷史沿革

  起源

  大約在1629年,法國數(shù)學(xué)家費馬研究了作曲線的切線和求函數(shù)極值的方法;1637年左右,他寫一篇手稿《求最大值與最小值的方法》。在作切線時,他構(gòu)造了差分f(A+E)-f(A),發(fā)現(xiàn)的因子E就是我們所說的導(dǎo)數(shù)f'(A)。

  發(fā)展

  17世紀(jì)生產(chǎn)力的發(fā)展推動了自然科學(xué)和技術(shù)的發(fā)展,在前人創(chuàng)造性研究的基礎(chǔ)上,大數(shù)學(xué)家牛頓、萊布尼茨等從不同的角度開始系統(tǒng)地研究微積分。牛頓的微積分理論被稱為“流數(shù)術(shù)”,他稱變量為流量,稱變量的變化率為流數(shù),相當(dāng)于我們所說的導(dǎo)數(shù)。牛頓的有關(guān)“流數(shù)術(shù)”的主要著作是《求曲邊形面積》、《運用無窮多項方程的計算法》和《流數(shù)術(shù)和無窮級數(shù)》,流數(shù)理論的實質(zhì)概括為:他的重點在于一個變量的函數(shù)而不在于多變量的方程;在于自變量的變化與函數(shù)的變化的比的構(gòu)成;最在于決定這個比當(dāng)變化趨于零時的極限。

  成熟

  1750年達(dá)朗貝爾在為法國科學(xué)家院出版的《百科全書》第四版寫的“微分”條目中提出了關(guān)于導(dǎo)數(shù)的一種觀點,可以用現(xiàn)代符號簡單表示: 。

  1823年,柯西在他的《無窮小分析概論》中定義導(dǎo)數(shù):如果函數(shù)y=f(x)在變量x的兩個給定的界限之間保持連續(xù),并且我們?yōu)檫@樣的變量指定一個包含在這兩個不同界限之間的值,那么是使變量得到一個無窮小增量。19世紀(jì)60年代以后,魏爾斯特拉斯創(chuàng)造了ε-δ語言,對微積分中出現(xiàn)的各種類型的極限重加表達(dá)。

  微積分學(xué)理論基礎(chǔ),大體可以分為兩個部分。一個是實無限理論,即無限是一個具體的東西,一種真實的存在;另一種是潛無限理論,指一種意識形態(tài)上的過程,比如無限接近。

  就數(shù)學(xué)歷史來看,兩種理論都有一定的道理,實無限就使用了150年。

  光是電磁波還是粒子是一個物理學(xué)長期爭論的問題,后來由波粒二象性來統(tǒng)一。微積分無論是用現(xiàn)代極限論還是150年前的理論,都不是最好的方法。

【導(dǎo)數(shù)的概念是什么及幾何意義】相關(guān)文章:

中考加分政策的概念是什么01-27

環(huán)境日的意義是什么07-20

績效考核的概念和意義有哪些12-18

會計信息質(zhì)量的概念是什么01-26

薪酬福利管理的意義是什么12-02

商務(wù)接待禮儀的意義是什么12-18

會計主體假設(shè)的意義是什么12-18

世界水日的意義是什么07-27

清明節(jié)的意義是什么07-28

中秋的象征意義是什么12-25