亚欧洲精品在线观看,窝窝影院午夜看片,久久国产成人午夜av影院宅,午夜91,免费国产人成网站,ts在线视频,欧美激情在线一区

數(shù)學(xué) 百文網(wǎng)手機(jī)站

初二數(shù)學(xué)知識(shí)點(diǎn)

時(shí)間:2022-12-08 16:36:37 數(shù)學(xué) 我要投稿

初二數(shù)學(xué)知識(shí)點(diǎn)

  上學(xué)期間,是不是經(jīng)常追著老師要知識(shí)點(diǎn)?知識(shí)點(diǎn)就是“讓別人看完能理解”或者“通過(guò)練習(xí)我能掌握”的內(nèi)容。相信很多人都在為知識(shí)點(diǎn)發(fā)愁,以下是小編整理的初二數(shù)學(xué)知識(shí)點(diǎn),僅供參考,希望能夠幫助到大家。

初二數(shù)學(xué)知識(shí)點(diǎn)

初二數(shù)學(xué)知識(shí)點(diǎn)1

  1、 線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合

  2、 定理1 關(guān)于某條直線(xiàn)對(duì)稱(chēng)的兩個(gè)圖形是全等形

  3 、定理 2 如果兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng),那么對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)連線(xiàn)的垂直平分線(xiàn)

  4、定理3 兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng),如果它們的對(duì)應(yīng)線(xiàn)段或延長(zhǎng)線(xiàn)相交,那么交點(diǎn)在對(duì)稱(chēng)軸上

  5、逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對(duì)稱(chēng)

  6、勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

  7、勾股定理的逆定理 如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個(gè)三角形是直角三角形

  8、定理 四邊形的內(nèi)角和等于360

  9、四邊形的外角和等于360

  10、多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)180

初二數(shù)學(xué)知識(shí)點(diǎn)2

  全等三角形

  知識(shí)與技能目標(biāo)考點(diǎn)課標(biāo)要求了解理解掌握用畫(huà)出任意三角形的角平分線(xiàn)、中線(xiàn)和高全等三角形的概念三角形全等的條件三角形的中位線(xiàn)三角形等腰三角形、直角三角形、等邊三角形的概念等腰三角形的性質(zhì)和成為等腰三角形的條件直角三角形的性質(zhì)和成為直角三角形的條件等邊三角形的性質(zhì)運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單問(wèn)題∨∨∨∨∨∨∨∨∨靈活應(yīng)軸對(duì)稱(chēng)

  知識(shí)與技能目標(biāo)考課標(biāo)要求點(diǎn)了解理解掌握用認(rèn)識(shí)軸對(duì)稱(chēng),探索它的基本性質(zhì)對(duì)應(yīng)點(diǎn)所連的線(xiàn)段被對(duì)稱(chēng)軸垂直平分的性質(zhì)作出簡(jiǎn)單平面圖形經(jīng)過(guò)一次或兩次軸對(duì)稱(chēng)后的圖形圖探索簡(jiǎn)單圖形之間的軸對(duì)稱(chēng)關(guān)系,并能指出對(duì)稱(chēng)軸形的對(duì)稱(chēng)探索基本圖形(等腰三角形,矩形。菱形.等腰梯形,正多邊形,圓)的軸對(duì)稱(chēng)性及其相關(guān)性質(zhì)欣賞現(xiàn)實(shí)生活中的軸對(duì)稱(chēng)圖形欣賞物體的鏡面對(duì)稱(chēng)利用軸對(duì)稱(chēng)進(jìn)行圖案設(shè)計(jì)對(duì)應(yīng)點(diǎn)連線(xiàn)平行且相等的性質(zhì)∨∨∨∨∨∨∨∨∨靈活應(yīng)按要求作出簡(jiǎn)單平面圖形平移后的圖形利用平移進(jìn)行圖案設(shè)計(jì)∨∨數(shù)據(jù)的描述

  知識(shí)與技能目標(biāo)考點(diǎn)課標(biāo)要求會(huì)用扇形統(tǒng)計(jì)圖表示數(shù)據(jù)理解頻數(shù)、頻率的概念數(shù)據(jù)的描述了解頻率分布的意義和作用會(huì)列頻數(shù)分布表,畫(huà)頻數(shù)分布直方圖和頻數(shù)折線(xiàn)圖能解決簡(jiǎn)單的實(shí)際問(wèn)題了解∨∨理解掌握∨∨靈活應(yīng)用∨

  2.頻數(shù)分布

  當(dāng)一組數(shù)據(jù)有n個(gè)數(shù)時(shí),頻數(shù)之和=n,頻率=,頻率之和=1,小長(zhǎng)方形的高代表頻數(shù)。

  一次函數(shù)

  知識(shí)與技能目標(biāo)考課標(biāo)要求點(diǎn)理解一次函數(shù)(包括正比例函數(shù))的概念一次函會(huì)畫(huà)一次函數(shù)(包括正比例函數(shù))的圖像理解一次函數(shù)的性質(zhì)并會(huì)應(yīng)用了解理解∨∨∨∨∨掌握應(yīng)用∨∨∨靈活能根據(jù)實(shí)際問(wèn)題列出一次函數(shù)及用待定系數(shù)法確數(shù)定一次函數(shù)的解析式用一次函數(shù)的圖像求二元一次方程組的近似解

  1.正比例函數(shù)與一次函數(shù)的關(guān)系:正比例函數(shù)是當(dāng)y=kx+b中b=0時(shí)特殊的一次函數(shù)。

  2.待定系數(shù)法確定正比例函數(shù)、一次函數(shù)的解析式:通常已知一點(diǎn)便可用待定系數(shù)法確定出正比例函數(shù)的解析式,已知兩點(diǎn)便可確定一次函數(shù)解析式。

  3.一次函數(shù)的圖像:正比例函數(shù)y=kx(k≠0)是過(guò)(0,0),(1,k)兩點(diǎn)的一條直線(xiàn);一

  次函數(shù)y=kx+b(k≠0)是過(guò)(0,b),(

  ,0)兩點(diǎn)的一條直線(xiàn)。4.直線(xiàn)y=kx+b(k≠0)的位置與k、b符號(hào)的關(guān)系:當(dāng)k>0是直線(xiàn)y=kx+b過(guò)第一、三象限,當(dāng)k0直線(xiàn)交y軸于正半軸,b是負(fù)數(shù)時(shí),要特別注意符號(hào)。

  3.公式的探求與應(yīng)用:探求公式時(shí)要先觀(guān)察其中的規(guī)律,通過(guò)嘗試,歸納出公式,再加以驗(yàn)證,這幾個(gè)環(huán)節(jié)都是必不可少的,再就是靈活運(yùn)用公式解決實(shí)際問(wèn)題。

  4.正確理解整式的概念:整式的系數(shù)、次數(shù)、項(xiàng)、同類(lèi)項(xiàng)等概念必須清楚,是今后學(xué)習(xí)方程、整式乘除、分式和二次函數(shù)的基礎(chǔ)。

  5.熟練掌握合并同類(lèi)項(xiàng)、去(添)括號(hào)法則:要處理好合并同類(lèi)項(xiàng)及去(添)括號(hào)中各項(xiàng)符號(hào)處理,式的運(yùn)算是數(shù)的運(yùn)算的深化,加強(qiáng)式與數(shù)的運(yùn)算對(duì)比與分析,體會(huì)其中滲透的轉(zhuǎn)化思想。

  6.能熟練地運(yùn)用冪的運(yùn)算性質(zhì)進(jìn)行計(jì)算:冪的運(yùn)算是整式的乘法的基礎(chǔ),也是考試的重點(diǎn)內(nèi)容,要求熟練掌握。運(yùn)算中注意“符號(hào)”問(wèn)題和區(qū)分各種運(yùn)算時(shí)指數(shù)的不同運(yùn)算。

  7.能熟練運(yùn)用整式的乘法法則進(jìn)行計(jì)算:整式運(yùn)算常以混合運(yùn)算出現(xiàn),其中單項(xiàng)式乘法是關(guān)鍵,其他乘除都要轉(zhuǎn)化為單項(xiàng)式乘法。

  8.能靈活運(yùn)用乘法公式進(jìn)行計(jì)算:乘法公式的運(yùn)用是重點(diǎn)也是難點(diǎn),計(jì)算時(shí),要注意觀(guān)察每個(gè)因式的結(jié)構(gòu)特點(diǎn),經(jīng)過(guò)適當(dāng)調(diào)整后,表面看來(lái)不能運(yùn)用乘法公式的式子就可以運(yùn)用乘法公式,從而使計(jì)算大大簡(jiǎn)化。

  9.區(qū)分因式分解與整式的乘法:它們的關(guān)系是意義上正好相反,結(jié)果的特征是因式分解是積的形式,整式的乘法是和的形式,抓住這一特征,就不容易混淆因式分解與整式的乘法。

  10.因式分解的兩種方法的靈活應(yīng)用:對(duì)于給出的多項(xiàng)式,首先要觀(guān)察是否有公因式,有公因式的話(huà),首先要提公因式,然后再觀(guān)察運(yùn)用公式還是分組。分解因式要分解到不能分解為止。

  擴(kuò)展閱讀:人教版初二數(shù)學(xué)(上)知識(shí)點(diǎn)歸納

  初二數(shù)學(xué)(上)應(yīng)知應(yīng)會(huì)的知識(shí)點(diǎn)

  因式分解

  1.因式分解:把一個(gè)多項(xiàng)式化為幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解;注意:因式分解與乘法是相反的兩個(gè)轉(zhuǎn)化.

  2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.3.公因式的確定:系數(shù)的最大公約數(shù)相同因式的最低次冪.

  注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.4.因式分解的公式:

  (1)平方差公式:a2-b2=(a+b)(a-b);

  (2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.5.因式分解的注意事項(xiàng):

 。1)選擇因式分解方法的一般次序是:一提取、二公式、三分組、四十字;(2)使用因式分解公式時(shí)要特別注意公式中的字母都具有整體性;(3)因式分解的最后結(jié)果要求分解到每一個(gè)因式都不能分解為止;(4)因式分解的最后結(jié)果要求每一個(gè)因式的首項(xiàng)符號(hào)為正;(5)因式分解的最后結(jié)果要求加以整理;

  (6)因式分解的最后結(jié)果要求相同因式寫(xiě)成乘方的形式.

  6.因式分解的解題技巧:(1)換位整理,加括號(hào)或去括號(hào)整理;(2)提負(fù)號(hào);(3)全變號(hào);(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分?jǐn)?shù)系數(shù);(9)展開(kāi)部分括號(hào)或全部括號(hào);(10)拆項(xiàng)或補(bǔ)項(xiàng).

  7.完全平方式:能化為(m+n)2的多項(xiàng)式叫完全平方式;對(duì)于二次三項(xiàng)式x2+px+q,有“x2+px+q是完全平方式分式

  Apq22”.

  1.分式:一般地,用A、B表示兩個(gè)整式,A÷B就可以表示為B的形式,如果B

  A中含有字母,式子B叫做分式.

  整式有理式分式2.有理式:整式與分式統(tǒng)稱(chēng)有理式;即.

  3.對(duì)于分式的兩個(gè)重要判斷:(1)若分式的分母為零,則分式無(wú)意義,反之有意義;(2)若分式的分子為零,而分母不為零,則分式的值為零;注意:若分式的分子為零,而分母也為零,則分式無(wú)意義.4.分式的基本性質(zhì)與應(yīng)用:

  (1)若分式的分子與分母都乘以(或除以)同一個(gè)不為零的整式,分式的值不變;

 。2)注意:在分式中,分子、分母、分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變;即

  分子分母分子分母分子分母分子分母

 。3)繁分式化簡(jiǎn)時(shí),采用分子分母同乘小分母的最小公倍數(shù)的方法,比較簡(jiǎn)單.5.分式的約分:把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經(jīng)常需要先因式分解.

  6.最簡(jiǎn)分式:一個(gè)分式的分子與分母沒(méi)有公因式,這個(gè)分式叫做最簡(jiǎn)分式;注意:分式計(jì)算的最后結(jié)果要求化為最簡(jiǎn)分式.

  acac,bdbd7.分式的乘除法法則:

  nna

  bcdadadbcbc.

  aan.(n為正整數(shù))b8.分式的乘方:b.

  9.負(fù)整指數(shù)計(jì)算法則:

  1(1)公式:a0=1(a≠0),a-n=a(a≠0);(2)正整指數(shù)的運(yùn)算法則都可用于負(fù)整指數(shù)計(jì)算;

  a(3)公式:bnnbananm,bbamn;

 。4)公式:(-1)-2=1,(-1)-3=-1.

  10.分式的通分:根據(jù)分式的基本性質(zhì),把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先確定最簡(jiǎn)公分母.11.最簡(jiǎn)公分母的確定:系數(shù)的最小公倍數(shù)相同因式的最高次冪.

  abcabcabcdadbdbcbdadbcbd12.同分母與異分母的分式加減法法則:

  c;.

  13.含有字母系數(shù)的一元一次方程:在方程ax+b=0(a≠0)中,x是未知數(shù),a和b是用字母表示的已知數(shù),對(duì)x來(lái)說(shuō),字母a是x的系數(shù),叫做字母系數(shù),字母b是常數(shù)項(xiàng),我們稱(chēng)它為含有字母系數(shù)的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知數(shù),用x、y、z等表示未知數(shù).

  14.公式變形:把一個(gè)公式從一種形式變換成另一種形式,叫做公式變形;注意:公式變形的本質(zhì)就是解含有字母系數(shù)的方程.特別要注意:字母方程兩邊同時(shí)乘以含字母的代數(shù)式時(shí),一般需要先確認(rèn)這個(gè)代數(shù)式的值不為0.

  15.分式方程:分母里含有未知數(shù)的方程叫做分式方程;注意:以前學(xué)過(guò)的,分母里不含未知數(shù)的方程是整式方程.

  16.分式方程的增根:在解分式方程時(shí),為了去分母,方程的兩邊同乘以了含有未知數(shù)的代數(shù)式,所以可能產(chǎn)生增根,故分式方程必須驗(yàn)增根;注意:在解方程時(shí),方程的兩邊一般不要同時(shí)除以含未知數(shù)的代數(shù)式,因?yàn)榭赡軄G根.

  17.分式方程驗(yàn)增根的方法:把分式方程求出的根代入最簡(jiǎn)公分母(或分式方程的每個(gè)分母),若值為零,求出的根是增根,這時(shí)原方程無(wú)解;若值不為零,求出的根是原方程的解;注意:由此可判斷,使分母的值為零的未知數(shù)的值可能是原方程的增根.18.分式方程的應(yīng)用:列分式方程解應(yīng)用題與列整式方程解應(yīng)用題的方法一樣,但需要增加“驗(yàn)增根”的程序.數(shù)的開(kāi)方

  1.平方根的定義:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方數(shù),(2)已知x求a叫乘方,已知a求x叫開(kāi)方,乘方與開(kāi)方互為逆運(yùn)算.2.平方根的性質(zhì):

  (1)正數(shù)的平方根是一對(duì)相反數(shù);(2)0的平方根還是0;(3)負(fù)數(shù)沒(méi)有平方根.

  3.平方根的表示方法:a的平方根表示為也可以認(rèn)為是一個(gè)數(shù)開(kāi)二次方的運(yùn)算.

  4.算術(shù)平方根:正數(shù)a的正的平方根叫a的算術(shù)平方根,表示為平方根還是0.

  5.三個(gè)重要非負(fù)數(shù):a2≥0,|a|≥0,0.

  6.兩個(gè)重要公式:(1)aa2a和a.注意:

  a可以看作是一個(gè)數(shù),

  a.注意:0的算術(shù)

  a≥0.注意:非負(fù)數(shù)之和為0,說(shuō)明它們都是

  2a;(a≥0)

  (a0)aaa(a0)

  .

  7.立方根的定義:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方數(shù);(2)a的立方根表示為8.立方根的性質(zhì):

  (1)正數(shù)的立方根是一個(gè)正數(shù);(2)0的立方根還是0;

  -3-

  3a;即把a(bǔ)開(kāi)三次方.(3)負(fù)數(shù)的立方根是一個(gè)負(fù)數(shù).9.立方根的特性:

  3a3a.

  10.無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫做無(wú)理數(shù).注意:和開(kāi)方開(kāi)不盡的數(shù)是無(wú)理數(shù).

  11.實(shí)數(shù):有理數(shù)和無(wú)理數(shù)統(tǒng)稱(chēng)實(shí)數(shù).

  12.正有理數(shù)0負(fù)有理數(shù)有限小數(shù)與無(wú)限循環(huán)小數(shù)正無(wú)理數(shù)無(wú)限不循環(huán)小數(shù)負(fù)無(wú)理數(shù)(2)

  13.?dāng)?shù)軸的性質(zhì):數(shù)軸上的點(diǎn)與實(shí)數(shù)一一對(duì)應(yīng).

  14.無(wú)理數(shù)的近似值:實(shí)數(shù)計(jì)算的結(jié)果中若含有無(wú)理數(shù)且題目無(wú)近似要求,則結(jié)果應(yīng)該用無(wú)理數(shù)表示;如果題目有近似要求,則結(jié)果應(yīng)該用無(wú)理數(shù)的近似值表示.注意:(1)近似計(jì)算時(shí),中間過(guò)程要多保留一位;(2)要求記憶:21.414

  52.236.

  31.732

  正實(shí)數(shù)實(shí)數(shù)0負(fù)實(shí)數(shù)三角形

  幾何A級(jí)概念:(要求深刻理解、熟練運(yùn)用、主要用于幾何證明)1.三角形的角平分線(xiàn)定義:三角形的一個(gè)角的平分線(xiàn)與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線(xiàn)段叫做三角形的角平分線(xiàn).(如圖)2.三角形的中線(xiàn)定義:在三角形中,連結(jié)一個(gè)頂點(diǎn)和它的對(duì)邊的中點(diǎn)的線(xiàn)段叫做三角形的中線(xiàn).(如圖)3.三角形的高線(xiàn)定義:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊畫(huà)垂-4-

  BDCA幾何表達(dá)式舉例:(1)∵AD平分∠BAC∴∠BAD=∠CADBDC(2)∵∠BAD=∠CAD∴AD是角平分線(xiàn)幾何表達(dá)式舉例:A(1)∵AD是三角形的中線(xiàn)∴BD=CD(2)∵BD=CD∴AD是三角形的中線(xiàn)幾何表達(dá)式舉例:(1)∵AD是ΔABC的高線(xiàn),頂點(diǎn)和垂足間的線(xiàn)段叫做三角形的高線(xiàn).(如圖)※4.三角形的三邊關(guān)系定理:三角形的兩邊之和大于第三邊,三角形的兩邊之差小于第三邊.(如圖)5.等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.(如圖)6.等邊三角形的定義:有三條邊相等的三角形叫做等邊三角形.(如圖)BBBA∴∠ADB=90°(2)∵∠ADB=90°∴AD是ΔABC的高BDC幾何表達(dá)式舉例:(1)∵AB+BC>AC∴(2)∵AB-BC<ACAC∴幾何表達(dá)式舉例:A(1)∵ΔABC是等腰三角形∴AB=AC(2)∵AB=ACC∴ΔABC是等腰三角形幾何表達(dá)式舉例:(1)∵ΔABC是等邊三角形∴AB=BC=AC(2)∵AB=BC=ACAC∴ΔABC是等邊三角形幾何表達(dá)式舉例:(1)∵∠A+∠B+∠C=180°∴∴∠A+∠B=90°∴7.三角形的內(nèi)角和定理及推論:(1)三角形的內(nèi)角和180°;(如圖)(2)直角三角形的兩個(gè)銳角互余;(如圖)(如圖)角.BCA(3)三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;(2)∵∠C=90°※(4)三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)(3)∵∠ACD=∠A+∠B(4)∵∠ACD>∠A∴CBBCDAA(1)(2)(3)(4)8.直角三角形的定義:有一個(gè)角是直角的三角形叫直角三角形.(如圖)CBA幾何表達(dá)式舉例:(1)∵∠C=90°∴ΔABC是直角三角形(2)∵ΔABC是直角三角形∴∠C=90°9.等腰直角三角形的定義:腰直角三角形.(如圖)A幾何表達(dá)式舉例:(1)∵∠C=90°CA=CB∴ΔABC是等腰直角三角形(2)∵ΔABC是等腰直角三角CB兩條直角邊相等的直角三角形叫等形∴∠C=90°CA=CB10.全等三角形的性質(zhì):(1)全等三角形的對(duì)應(yīng)邊相等;(如圖)(2)全等三角形的對(duì)應(yīng)角相等.(如圖)BAE幾何表達(dá)式舉例:(1)∵ΔABC≌ΔEFG∴AB=EF(2)∵ΔABC≌ΔEFG∴∠A=∠ECFG幾何表達(dá)式舉例:(1)∵AB=EF∵∠B=∠F又∵BC=FG∴ΔABC≌ΔEFG(2)(3)在RtΔABC和RtΔEFG中∵AB=EF又∵AC=EG∴RtΔABC≌RtΔEFG11.全等三角形的判定:“SAS”“ASA”“AAS”“SSS”“HL”.(如圖)BCFG(1)(2)CBF(3)GAEAE12.角平分線(xiàn)的性質(zhì)定理及逆定理:(1)在角平分線(xiàn)上的點(diǎn)到角的兩邊距離相等;(如圖)(2)到角的兩邊距離相等的點(diǎn)在角平分線(xiàn)上.(如圖)13.線(xiàn)段垂直平分線(xiàn)的定義:-6-

  OEBDCA幾何表達(dá)式舉例:(1)∵OC平分∠AOB又∵CD⊥OACE⊥OB∴CD=CE(2)∵CD⊥OACE⊥OB又∵CD=CE∴OC是角平分線(xiàn)幾何表達(dá)式舉例:垂直于一條線(xiàn)段且平分這條線(xiàn)段的直線(xiàn),叫做這條線(xiàn)段的垂直平分線(xiàn).(如圖)14.線(xiàn)段垂直平分線(xiàn)的性質(zhì)定理及逆定理:(1)線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段的兩個(gè)端點(diǎn)的距離相等;(如圖)(2)和一條線(xiàn)段的兩個(gè)端點(diǎn)的距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上.(如圖)15.等腰三角形的性質(zhì)定理及推論:AAOE(1)∵EF垂直平分AB∴EF⊥ABOA=OBB(2)∵EF⊥ABOA=OB∴EF是AB的垂直平分線(xiàn)幾何表達(dá)式舉例:(1)∵M(jìn)N是線(xiàn)段AB的垂直平FMP分線(xiàn)∴PA=PBBC(2)∵PA=PB∴點(diǎn)P在線(xiàn)段AB的垂直平分線(xiàn)上幾何表達(dá)式舉例:N(1)等腰三角形的兩個(gè)底角相等;(即等邊對(duì)等角)(如圖)(1)∵AB=AC(2)等腰三角形的“頂角平分線(xiàn)、底邊中線(xiàn)、底邊上的高”∴∠B=∠C三線(xiàn)合一;(如圖)(3)等邊三角形的各角都相等,并且都是60°.(如圖)A(2)∵AB=AC又∵∠BAD=∠CAD∴BD=CDAAAD⊥BC(3)∵ΔABC是等邊三角形CBC(1)BDC(2)B(3)∴∠A=∠B=∠C=60°幾何表達(dá)式舉例:∴AB=AC(2)∵∠A=∠B=∠C16.等腰三角形的判定定理及推論:也相等;(即等角對(duì)等邊)(如圖)(2)三個(gè)角都相等的三角形是等邊三角形;(如圖)(1)如果一個(gè)三角形有兩個(gè)角都相等,那么這兩個(gè)角所對(duì)邊(1)∵∠B=∠C(3)有一個(gè)角等于60°的等腰三角形是等邊三角形;(如圖)∴ΔABC是等邊三角形(4)在直角三角形中,如果有一個(gè)角等于30°,那么它所對(duì)(3)∵∠A=60°的直角邊是斜邊的一半.(如圖)A又∵AB=AC∴ΔABC是等邊三角形AA(4)∵∠C=90°∠B=30°1CBC(1)B(2)(3)CB(4)∴AC=2AB17.關(guān)于軸對(duì)稱(chēng)的定理(1)關(guān)于某條直線(xiàn)對(duì)稱(chēng)的兩個(gè)圖形是全等形;(如圖)(2)如果兩個(gè)圖形關(guān)于某條直線(xiàn)對(duì)稱(chēng),那么對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)連線(xiàn)的垂直平分線(xiàn).(如圖)18.勾股定理及逆定理:的平方和等于斜邊c的平方,即a2+b2=c2;(如圖)(2)如果三角形的三邊長(zhǎng)有下面關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形.(如圖)19.RtΔ斜邊中線(xiàn)定理及逆定理:是斜邊的一半;(如圖)(2)如果三角形一邊上的中線(xiàn)是這邊的一半,那么這個(gè)三角形是直角三角形.(如圖)

  MAOCFE幾何表達(dá)式舉例:(1)∵ΔABC、ΔEGF關(guān)于MN軸對(duì)稱(chēng)∴ΔABC≌ΔEGFGNB(2)∵ΔABC、ΔEGF關(guān)于MN軸對(duì)稱(chēng)∴OA=OEMN⊥AE幾何表達(dá)式舉例:(1)∵ΔABC是直角三角形A(1)直角三角形的兩直角邊a、b∴a2+b2=c2(2)∵a2+b2=c2∴ΔABC是直角三角形CB幾何表達(dá)式舉例:∵ΔABC是直角三角形∵D是AB的中點(diǎn)A(1)直角三角形中,斜邊上的中線(xiàn)D1∴CD=CB2AB(2)∵CD=AD=BD∴ΔABC是直角三角形幾何B級(jí)概念:(要求理解、會(huì)講、會(huì)用,主要用于填空和選擇題)一基本概念:

  三角形、不等邊三角形、銳角三角形、鈍角三角形、三角形的外角、全等三角形、角平分線(xiàn)的集合定義、原命題、逆命題、逆定理、尺規(guī)作圖、輔助線(xiàn)、線(xiàn)段垂直平分線(xiàn)的集合定義、軸對(duì)稱(chēng)的定義、軸對(duì)稱(chēng)圖形的定義、勾股數(shù).二常識(shí):

  1.三角形中,第三邊長(zhǎng)的判斷:另兩邊之差<第三邊<另兩邊之和.

  2.三角形中,有三條角平分線(xiàn)、三條中線(xiàn)、三條高線(xiàn),它們都分別交于一點(diǎn),其中前兩個(gè)交點(diǎn)都在三角形內(nèi),而第三個(gè)交點(diǎn)可在三角形內(nèi),三角形上,三角形外.注意:三角形的角平分線(xiàn)、中線(xiàn)、高線(xiàn)都是線(xiàn)段.

  3.如圖,三角形中,有一個(gè)重要的面積等式,即:若CD⊥AB,BE⊥CA,則CDAB=BECA.

  4.三角形能否成立的條件是:最長(zhǎng)邊<另兩邊之和.

  5.直角三角形能否成立的條件是:最長(zhǎng)邊的平方等于另兩邊的平方和.

  -8-

  BDECA6.分別含30°、45°、60°的直角三角形是特殊的直角三角形.

  7.如圖,雙垂圖形中,有兩個(gè)重要的性質(zhì),即:(1)ACCB=CDAB;(2)∠1=∠B,∠2=∠A.8.三角形中,最多有一個(gè)內(nèi)角是鈍角,但最少有兩個(gè)外角是鈍角.邊是對(duì)應(yīng)邊.

  10.等邊三角形是特殊的等腰三角形.

  11.幾何習(xí)題中,“文字?jǐn)⑹鲱}”需要自己畫(huà)圖,寫(xiě)已知、求證、證明.12.符合“AAA”“SSA”條件的三角形不能判定全等.

  13.幾何習(xí)題經(jīng)常用四種方法進(jìn)行分析:(1)分析綜合法;(2)方程分析法;(3)代入分析法;(4)圖形觀(guān)察法.

  14.幾何基本作圖分為:(1)作線(xiàn)段等于已知線(xiàn)段;(2)作角等于已知角;(3)作已知角的平分線(xiàn);(4)過(guò)已知點(diǎn)作已知直線(xiàn)的垂線(xiàn);(5)作線(xiàn)段的中垂線(xiàn);(6)過(guò)已知點(diǎn)作已知直線(xiàn)的平行線(xiàn).

  15.會(huì)用尺規(guī)完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等邊三角形”、“等腰直角三角形”的作圖.

  16.作圖題在分析過(guò)程中,首先要畫(huà)出草圖并標(biāo)出字母,然后確定先畫(huà)什么,后畫(huà)什么;注意:每步作圖都應(yīng)該是幾何基本作圖.

  17.幾何畫(huà)圖的類(lèi)型:(1)估畫(huà)圖;(2)工具畫(huà)圖;(3)尺規(guī)畫(huà)圖.※18.幾何重要圖形和輔助線(xiàn):(1)選取和作輔助線(xiàn)的原則:

 、贅(gòu)造特殊圖形,使可用的定理增加;②一舉多得;

 、劬酆项}目中的分散條件,轉(zhuǎn)移線(xiàn)段,轉(zhuǎn)移角;④作輔助線(xiàn)必須符合幾何基本作圖.

 。2)已知角平分線(xiàn).(若BD是角平分線(xiàn))

  ①在BA上截取BE=BC構(gòu)造全等,轉(zhuǎn)②過(guò)D點(diǎn)作DE∥BC交AB于E,構(gòu)造等移線(xiàn)段和角;

 。3)已知三角形中線(xiàn)(若AD是BC的中線(xiàn))

  ①過(guò)D點(diǎn)作DE∥AC交AB②延長(zhǎng)AD到E,使DE=AD③∵AD是中線(xiàn)

  -9-

  BEDEDAAD12CB9.全等三角形中,重合的點(diǎn)是對(duì)應(yīng)頂點(diǎn),對(duì)應(yīng)頂點(diǎn)所對(duì)的角是對(duì)應(yīng)角,對(duì)應(yīng)角所對(duì)的

  腰三角形.ACBCABDC于E,構(gòu)造中位線(xiàn);

  BDCAE連結(jié)CE構(gòu)造全等,轉(zhuǎn)移線(xiàn)段和角;∴SΔABD=SΔADC(等底等高的三角形等面積)ABDC(4)已知等腰三角形ABC中,AB=AC

  ①作等腰三角形ABC底邊的中線(xiàn)AD②作等腰三角形ABC一邊的平行線(xiàn)DE,構(gòu)造(頂角的平分線(xiàn)或底邊的高)構(gòu)造全等三角形;

 。5)其它作等邊三角形ABC一邊的平行線(xiàn)DE,構(gòu)造新的等邊三角形;

 、芏噙呅无D(zhuǎn)化為三角⑤延長(zhǎng)BC到D,使⑥若a∥b,AC,BC是角平形;

  BCEADOBDCBDC新的等腰三角形.AAAEDEBC②作CE∥AB,轉(zhuǎn)移角;③延長(zhǎng)BD與AC交于E,AE不規(guī)則圖形轉(zhuǎn)化為規(guī)則圖形;BCDDAEAEBDCBCCD=BC,連結(jié)AD,直角三角形轉(zhuǎn)化為等腰三角形;ABCD分線(xiàn),則∠C=90°.BAaCb

初二數(shù)學(xué)知識(shí)點(diǎn)3

  數(shù)據(jù)的分析

  1、平均數(shù)

 、僖话愕兀瑢(duì)于n個(gè)數(shù)x1x2...xn,我們把(x1+x2+???+xn)叫做這n個(gè)數(shù)的算數(shù)平均數(shù),簡(jiǎn)稱(chēng)平均數(shù)記為。

 、谠趯(shí)際問(wèn)題中,一組數(shù)據(jù)里的各個(gè)數(shù)據(jù)的“重要程度”未必相同,因而在計(jì)算,這組數(shù)據(jù)的`平均數(shù)時(shí),往往給每個(gè)數(shù)據(jù)一個(gè)權(quán),叫做加權(quán)平均數(shù)。

  2、中位數(shù)與眾數(shù)

 、僦形粩(shù):一般地,n個(gè)數(shù)據(jù)按大小順序排列,處于最中間位置的一個(gè)數(shù)據(jù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。

  ②一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。

  ③平均數(shù)、中位數(shù)和眾數(shù)都是描述數(shù)據(jù)集中趨勢(shì)的統(tǒng)計(jì)量。

  ④計(jì)算平均數(shù)時(shí),所有數(shù)據(jù)都參加運(yùn)算,它能充分地利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實(shí)生活中較為常用,但他容易受極端值影響。

  ⑤中位數(shù)的優(yōu)點(diǎn)是計(jì)算簡(jiǎn)單,受極端值影響較小,但不能充分利用所有數(shù)據(jù)的信息。

 、薷鱾(gè)數(shù)據(jù)重復(fù)次數(shù)大致相等時(shí),眾數(shù)往往沒(méi)有特別意義。

  3、從統(tǒng)計(jì)圖分析數(shù)據(jù)的集中趨勢(shì)

  4、數(shù)據(jù)的離散程度

 、賹(shí)際生活中,除了關(guān)心數(shù)據(jù)的集中趨勢(shì)外,人們還關(guān)注數(shù)據(jù)的離散程度,即它們相對(duì)于集中趨勢(shì)的偏離情況。一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差,(稱(chēng)為極差),就是刻畫(huà)數(shù)據(jù)離散程度的一個(gè)統(tǒng)計(jì)量。

 、跀(shù)學(xué)上,數(shù)據(jù)的離散程度還可以用方差或標(biāo)準(zhǔn)差刻畫(huà)。

 、鄯讲钍歉鱾(gè)數(shù)據(jù)與平均數(shù)差的平方的平均數(shù)。

  ④其中是x1,x2.....xn平均數(shù),s2是方差,而標(biāo)準(zhǔn)差就是方差的算術(shù)平方根。

 、菀话愣,一組數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。

初二數(shù)學(xué)知識(shí)點(diǎn)4

  一、函數(shù):

  一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱(chēng)y是x的函數(shù),其中x是自變量,y是因變量。

  二、自變量取值范圍

  使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實(shí)數(shù)),分式(分母不為0)、二次根式(被開(kāi)方數(shù)為非負(fù)數(shù))、實(shí)際意義幾方面考慮。

  三、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

  (1)關(guān)系式(解析)法

  兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做關(guān)系式(解析)法。

  (2)列表法

  把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法。

  (3)圖象法

  用圖象表示函數(shù)關(guān)系的方法叫做圖象法。

  四、由函數(shù)關(guān)系式畫(huà)其圖像的一般步驟

  (1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值

  (2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)

  (3)連線(xiàn):按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線(xiàn)連接起來(lái)。

  五、正比例函數(shù)和一次函數(shù)

  1、正比例函數(shù)和一次函數(shù)的概念

  一般地,若兩個(gè)變量x,y間的關(guān)系可以表示成 (k,b為常數(shù),k 0)的形式,則稱(chēng)y是x的一次函數(shù)(x為自變量,y為因變量)。

  特別地,當(dāng)一次函數(shù) 中的b=0時(shí)(即 )(k為常數(shù),k 0),稱(chēng)y是x的正比例函數(shù)。

  2、一次函數(shù)的圖像: 所有一次函數(shù)的圖像都是一條直線(xiàn)

  3、一次函數(shù)、正比例函數(shù)圖像的主要特征:

  一次函數(shù) 的圖像是經(jīng)過(guò)點(diǎn)(0,b)的直線(xiàn);正比例函數(shù) 的圖像是經(jīng)過(guò)原點(diǎn)(0,0)的直線(xiàn)。

  4、正比例函數(shù)的性質(zhì)

  一般地,正比例函數(shù) 有下列性質(zhì):

  (1)當(dāng)k0時(shí),圖像經(jīng)過(guò)第一、三象限,y隨x的增大而增大;

  (2)當(dāng)k0時(shí),圖像經(jīng)過(guò)第二、四象限,y隨x的增大而減小。

  5、一次函數(shù)的性質(zhì)

  一般地,一次函數(shù) 有下列性質(zhì):

  (1)當(dāng)k0時(shí),y隨x的增大而增大

  (2)當(dāng)k0時(shí),y隨x的增大而減小

  6、正比例函數(shù)和一次函數(shù)解析式的確定

  確定一個(gè)正比例函數(shù),就是要確定正比例函數(shù)定義式 (k 0)中的常數(shù)k。確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式 (k 0)中的常數(shù)k和b。解這類(lèi)問(wèn)題的一般方法是待定系數(shù)法。

  7、一次函數(shù)與一元一次方程的關(guān)系:

  任何一個(gè)一元一次方程都可轉(zhuǎn)化為:kx+b=0(k、b為常數(shù),k0)的形式. 而一次函數(shù)解析式形式正是y=kx+b(k、b為常數(shù),k0).當(dāng)函數(shù)值為0時(shí),即kx+b=0就與一元一次方程完全相同.

  結(jié)論:由于任何一元一次方程都可轉(zhuǎn)化為kx+b=0(k、b為常數(shù),k0)的形式.所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)一次函數(shù)值為0時(shí),求相應(yīng)的自變量的值.

初二數(shù)學(xué)知識(shí)點(diǎn)5

  必備的初二上冊(cè)數(shù)學(xué)第六章知識(shí)點(diǎn):平均數(shù)

  平均數(shù)問(wèn)題:平均數(shù)是等分除法的發(fā)展。

  解題關(guān)鍵:在于確定總數(shù)量和與之相對(duì)應(yīng)的總份數(shù)。

  算術(shù)平均數(shù):已知幾個(gè)不相等的同類(lèi)量和與之相對(duì)應(yīng)的份數(shù),求平均每份是多少。數(shù)量關(guān)系式:數(shù)量之和÷數(shù)量的個(gè)數(shù)=算術(shù)平均數(shù)。

  加權(quán)平均數(shù):已知兩個(gè)以上若干份的平均數(shù),求總平均數(shù)是多少。

  數(shù)量關(guān)系式(部分平均數(shù)×權(quán)數(shù))的總和÷(權(quán)數(shù)的和)=加權(quán)平均數(shù)。

  差額平均數(shù):是把各個(gè)大于或小于標(biāo)準(zhǔn)數(shù)的部分之和被總份數(shù)均分,求的是標(biāo)準(zhǔn)數(shù)與各數(shù)相差之和的平均數(shù)。

  數(shù)量關(guān)系式:(大數(shù)-小數(shù))÷2=小數(shù)應(yīng)得數(shù)最大數(shù)與各數(shù)之差的和÷總份數(shù)=最大數(shù)應(yīng)給數(shù)最大數(shù)與個(gè)數(shù)之差的和÷總份數(shù)=最小數(shù)應(yīng)得數(shù)。

初二數(shù)學(xué)知識(shí)點(diǎn)6

  第一章三角形的證明

  1、等腰三角形

  (1)三角形全等的性質(zhì)及判定

  全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角也相等判定:SSS、SAS、ASA、AAS、

  (2)等腰三角形的判定、性質(zhì)及推論

  性質(zhì):等腰三角形的兩個(gè)底角相等(等邊對(duì)等角)

  判定:有兩個(gè)角相等的三角形是等腰三角形(等角對(duì)等邊)

  推論:等腰三角形頂角的平分線(xiàn)、底邊上的中線(xiàn)、底邊上的高互相重合(即“三線(xiàn)合一”)

  (3)等邊三角形的性質(zhì)及判定定理

  性質(zhì)定理:等邊三角形的三個(gè)角都相等,并且每個(gè)角都等于60度;等邊三角形的三條邊都滿(mǎn)足“三線(xiàn)合一”的性質(zhì);等邊三角形是軸對(duì)稱(chēng)圖形,有3條對(duì)稱(chēng)軸。

  判定定理:有一個(gè)角是60度的等腰三角形是等邊三角形。或者三個(gè)角都相等的三角形是等邊三角形。

  (4)含30度的直角三角形的邊的性質(zhì)

  定理:在直角三角形中,如果一個(gè)銳角等于30度,那么它所對(duì)的直角邊等于斜邊的一半。

  2、直角三角形

  (1)勾股定理及其逆定理

  定理:直角三角形的兩條直角邊的平方和等于斜邊的平方。

  逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是直角三角形。

  (2)直角三角形兩個(gè)銳角之間的關(guān)系

  定理:直角三角形兩個(gè)銳角互余。

  逆定理:有兩個(gè)銳角互余的三角形是直角三角形。

  (3)含30度的直角三角形的邊的定理

  定理:在直角三角形中,如果一個(gè)銳角等于30度,那么它所對(duì)的直角邊等于斜邊的一半。

  逆定理:在直角三角形中,一條直角邊是斜邊的一半,那么這條直角邊所對(duì)的銳角是30度。

初二數(shù)學(xué)知識(shí)點(diǎn)7

  一、平均數(shù)、中位數(shù)、眾數(shù)的概念

  1.平均數(shù)

  平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個(gè)數(shù)。

  2.中位數(shù)

  中位數(shù)是指將統(tǒng)計(jì)總體當(dāng)中的各個(gè)變量值按大小順序排列起來(lái),形成一個(gè)數(shù)列,處于變量數(shù)列中間位置的變量值就稱(chēng)為中位數(shù)。

  3.眾數(shù)

  眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)值,叫眾數(shù),有時(shí)眾數(shù)在一組數(shù)中有好幾個(gè)。

初二數(shù)學(xué)知識(shí)點(diǎn)8

  1.分式的定義:如果A、B表示兩個(gè)整式,并且B中含有字母,那么式子 叫做分式。

  分式有意義的條件是分母不為零,分式值為零的條件分子為零且分母不為零

  2.分式的基本性質(zhì):分式的分子與分母同乘或除以一個(gè)不等于0的整式,分式的值不變。

  3.分式的通分和約分:關(guān)鍵先是分解因式

  4.分式的運(yùn)算:

  分式乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為分母。

  分式除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

  分式乘方法則: 分式乘方要把分子、分母分別乘方。

  分式的加減法則:同分母的分式相加減,分母不變,把分子相加減。異分母的分式相加減,先通分,變?yōu)橥帜阜质,然后再加減

  混合運(yùn)算:運(yùn)算順序和以前一樣。能用運(yùn)算率簡(jiǎn)算的可用運(yùn)算率簡(jiǎn)算。

  5. 任何一個(gè)不等于零的數(shù)的零次冪等于1, 即 ;當(dāng)n為正整數(shù)時(shí),

  6.正整數(shù)指數(shù)冪運(yùn)算性質(zhì)也可以推廣到整數(shù)指數(shù)冪.(m,n是整數(shù))

 。1)同底數(shù)的冪的乘法: ;

 。2)冪的乘方: ;

 。3)積的乘方: ;

  (4)同底數(shù)的冪的除法: ( a≠0);

  (5)商的乘方: ();(b≠0)

  7. 分式方程:含分式,并且分母中含未知數(shù)的方程--分式方程。

  解分式方程的過(guò)程,實(shí)質(zhì)上是將方程兩邊同乘以一個(gè)整式(最簡(jiǎn)公分母),把分式方程轉(zhuǎn)化為整式方程。

  解分式方程時(shí),方程兩邊同乘以最簡(jiǎn)公分母時(shí),最簡(jiǎn)公分母有可能為0,這樣就產(chǎn)生了增根,因此分式方程一定要驗(yàn)根。

  解分式方程的步驟 :

  (1)能化簡(jiǎn)的先化簡(jiǎn)(2)方程兩邊同乘以最簡(jiǎn)公分母,化為整式方程;(3)解整式方程;(4)驗(yàn)根.

  增根應(yīng)滿(mǎn)足兩個(gè)條件:一是其值應(yīng)使最簡(jiǎn)公分母為0,二是其值應(yīng)是去分母后所的整式方程的根。

  分式方程檢驗(yàn)方法:將整式方程的解帶入最簡(jiǎn)公分母,如果最簡(jiǎn)公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個(gè)解不是原分式方程的解。

  列方程應(yīng)用題的步驟是什么? (1)審;(2)設(shè);(3)列;(4)解;(5)答.

  應(yīng)用題有幾種類(lèi)型;基本公式是什么?基本上有五種: (1)行程問(wèn)題:基本公式:路程=速度×?xí)r間而行程問(wèn)題中又分相遇問(wèn)題、追及問(wèn)題. (2)數(shù)字問(wèn)題 在數(shù)字問(wèn)題中要掌握十進(jìn)制數(shù)的表示法. (3)工程問(wèn)題 基本公式:工作量=工時(shí)×工效. (4)順?biāo)嫠畣?wèn)題v順?biāo)?v靜水+v水. v逆水=v靜水-v水.

  8.科學(xué)記數(shù)法:把一個(gè)數(shù)表示成 的形式(其中 ,n是整數(shù))的記數(shù)方法叫做科學(xué)記數(shù)法.

  用科學(xué)記數(shù)法表示絕對(duì)值大于10的n位整數(shù)時(shí),其中10的指數(shù)是

  用科學(xué)記數(shù)法表示絕對(duì)值小于1的正小數(shù)時(shí),其中10的指數(shù)是第一個(gè)非0數(shù)字前面0的個(gè)數(shù)(包括小數(shù)點(diǎn)前面的一個(gè)0)

初二數(shù)學(xué)知識(shí)點(diǎn)9

  分組分解法

  我們看多項(xiàng)式am+an+bm+bn,這四項(xiàng)中沒(méi)有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

  如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.

  原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  做到這一步不叫把多項(xiàng)式分解因式,因?yàn)樗环弦蚴椒纸獾囊饬x.但不難看出這兩項(xiàng)還有公因式(m+n),因此還能繼續(xù)分解,所以

  原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  =(m+n)×(a+b).

  學(xué)好數(shù)學(xué)的關(guān)鍵就在于要適時(shí)適量地進(jìn)行總結(jié)歸類(lèi),接下來(lái)小編就為大家整理了這篇人教版八年級(jí)數(shù)學(xué)全等三角形知識(shí)點(diǎn)講解,希望可以對(duì)大家有所幫助。

  全等三角形的性質(zhì):全等三角形對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等。

  全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對(duì)邊對(duì)應(yīng)相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。

  角平分線(xiàn)的性質(zhì):角平分線(xiàn)平分這個(gè)角,角平分線(xiàn)上的點(diǎn)到角兩邊的距離相等

  角平分線(xiàn)推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線(xiàn)上。

  證明兩三角形全等或利用它證明線(xiàn)段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線(xiàn)、中線(xiàn)、高、等腰三角形、等所隱含的邊角關(guān)系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書(shū)寫(xiě)證明格式(順序和對(duì)應(yīng)關(guān)系從已知推導(dǎo)出要證明的問(wèn)題).

  人教版八年級(jí)數(shù)學(xué)全等三角形知識(shí)點(diǎn)講解就為大家介紹到這里了,希望大家都能養(yǎng)成善于總結(jié)的好習(xí)慣。

  這種利用分組來(lái)分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個(gè)多項(xiàng)式的項(xiàng)分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項(xiàng)式就可以用分組分解法來(lái)分解因式.

初二數(shù)學(xué)知識(shí)點(diǎn)10

  一、線(xiàn)段的垂直平分線(xiàn)

 、俣x:垂直并且平分已知線(xiàn)段的直線(xiàn)叫做線(xiàn)段的垂直平分線(xiàn)或中垂線(xiàn)

 、谛再|(zhì):

  a、線(xiàn)段的垂直平分線(xiàn)上的點(diǎn)到線(xiàn)段兩端點(diǎn)的距離相等的點(diǎn)在線(xiàn)段的垂直平分線(xiàn)上;

  b、到線(xiàn)段兩端點(diǎn)距離相等的點(diǎn)在線(xiàn)段的垂直平分線(xiàn)上;

  c、線(xiàn)段是軸對(duì)稱(chēng)圖形,線(xiàn)段的垂直平分線(xiàn)是線(xiàn)段的一條對(duì)稱(chēng)軸,另一條是線(xiàn)段所在的直線(xiàn)。

  二、角平分線(xiàn)的性質(zhì)

 、俳瞧椒志(xiàn)上的點(diǎn)到已知角兩邊的距離相等

  ②到已知角兩邊距離相等的點(diǎn)在已知角的角平分線(xiàn)上

 、劢鞘禽S對(duì)稱(chēng)圖形,角平分線(xiàn)所在的直線(xiàn)是該角的對(duì)稱(chēng)軸。

初二數(shù)學(xué)知識(shí)點(diǎn)11

  軸對(duì)稱(chēng)

  1.如果一個(gè)平面圖形沿著一條直線(xiàn)折疊后,直線(xiàn)兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱(chēng)圖形,這條直線(xiàn)叫做對(duì)稱(chēng)軸。

  2.性質(zhì)

  (1)成軸對(duì)稱(chēng)的兩個(gè)圖形全等;

  (2)如果兩個(gè)圖形成軸對(duì)稱(chēng),那么對(duì)稱(chēng)軸是對(duì)稱(chēng)點(diǎn)連線(xiàn)的垂直平分線(xiàn)。

  一次函數(shù)

  (一)一次函數(shù)是函數(shù)中的一種,一般形如y=kx+b(k,b是常數(shù),k≠0),其中x是自變量,y是因變量。特別地,當(dāng)b=0時(shí),y=kx+b(k為常數(shù),k≠0),y叫做x的正比例函數(shù)。

  (二)函數(shù)三要素

  1.定義域:設(shè)x、y是兩個(gè)變量,變量x的變化范圍為D,如果對(duì)于每一個(gè)數(shù)x∈D,變量y遵照一定的法則總有確定的數(shù)值與之對(duì)應(yīng),則稱(chēng)y是x的函數(shù),記作y=f(x),x∈D,x稱(chēng)為自變量,y稱(chēng)為因變量,數(shù)集D稱(chēng)為這個(gè)函數(shù)的定義域。

  2.在函數(shù)經(jīng)典定義中,因變量改變而改變的取值范圍叫做這個(gè)函數(shù)的值域,在函數(shù)現(xiàn)代定義中是指定義域中所有元素在某個(gè)對(duì)應(yīng)法則下對(duì)應(yīng)的所有的象所組成的集合。如:f(x)=x,那么f(x)的取值范圍就是函數(shù)f(x)的值域。

  3.對(duì)應(yīng)法則:一般地說(shuō),在函數(shù)記號(hào)y=f(x)中,“f”即表示對(duì)應(yīng)法則,等式y(tǒng)=f(x)表明,對(duì)于定義域中的任意的x值,在對(duì)應(yīng)法則“f”的作用下,即可得到值域中唯一y值。

  (三)一次函數(shù)的表示方法

  1.解析式法:用含自變量x的式子表示函數(shù)的方法叫做解析式法。

  2.列表法:把一系列x的值對(duì)應(yīng)的函數(shù)值y列成一個(gè)表來(lái)表示的函數(shù)關(guān)系的方法叫做列表法。

  3.圖像法:用圖象來(lái)表示函數(shù)關(guān)系的方法叫做圖象法。

  (四)一次函數(shù)的性質(zhì)

  1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k。即:y=kx+b(k≠0)(k不等于0,且k,b為常數(shù))。

  2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的交點(diǎn),坐標(biāo)為(0,b)。當(dāng)y=0時(shí),該函數(shù)圖象在x軸上的交點(diǎn)坐標(biāo)為(-b/k,0)。

  3.k為一次函數(shù)y=kx+b的斜率,k=tanθ(角θ為一次函數(shù)圖象與x軸正方向夾角,θ≠90°)。

  4.當(dāng)b=0時(shí)(即y=kx),一次函數(shù)圖象變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。

  5.函數(shù)圖象性質(zhì):當(dāng)k相同,且b不相等,圖像平行;當(dāng)k不同,且b相等,圖象相交于Y軸;當(dāng)k互為負(fù)倒數(shù)時(shí),兩直線(xiàn)垂直。

  6.平移時(shí):上加下減在末尾,左加右減在中間。

  直角三角形

  1.勾股定理及其逆定理

  定理:直角三角形的兩條直角邊的等于的平方。

  逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是直角三角形。

  2.含30°的直角三角形的邊的性質(zhì)

  定理:在直角三角形中,如果一個(gè)銳角等于30°,那么等于的一半。

  3.直角三角形斜邊上的中線(xiàn)等于斜邊的一半。

  要點(diǎn)詮釋?zhuān)孩俟垂啥ɡ淼哪娑ɡ碓谡Z(yǔ)言敘述的時(shí)候一定要注意,不能說(shuō)成“兩條邊的平方和等于斜邊的平方”,應(yīng)該說(shuō)成“三角形兩邊的平方和等于第三邊的平方”。

 、谥苯侨切蔚娜扰卸ǚ椒,HL還有SSS,SAS,ASA,AAS,一共有5種判定方法。

  圖形的平移與旋轉(zhuǎn)

  1.平移,是指在同一平面內(nèi),將一個(gè)圖形上的所有點(diǎn)都按照某個(gè)直線(xiàn)方向做相同距離的移動(dòng),這樣的圖形運(yùn)動(dòng)叫做圖形的平移運(yùn)動(dòng),簡(jiǎn)稱(chēng)平移。

  2.平移性質(zhì)

  (1)圖形平移前后的形狀和大小沒(méi)有變化,只是位置發(fā)生變化。

  (2)圖形平移后,對(duì)應(yīng)點(diǎn)連成的線(xiàn)段平行(或在同一直線(xiàn)上)且相等。

  拓展閱讀:初中數(shù)學(xué)提高解題速度的方法

  認(rèn)真仔細(xì)審題

  對(duì)于一道具體的習(xí)題,解題時(shí)最重要的環(huán)節(jié)是審題。審題的第一步是讀題,這是獲取信息量和思考的過(guò)程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話(huà)的內(nèi)在涵義,并從中找出隱含條件。

  有些學(xué)生沒(méi)有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開(kāi)始解題,結(jié)果常常是漏掉了一些信息,花了很長(zhǎng)時(shí)間解不出來(lái),還找不到原因,想快卻慢了。所以,在實(shí)際解題時(shí),應(yīng)特別注意,審題要認(rèn)真、仔細(xì)。

  做好歸納總結(jié)

  在解過(guò)一定數(shù)量的習(xí)題之后,對(duì)所涉及到的知識(shí)、解題方法進(jìn)行歸納總結(jié),以便使解題思路更為清晰,就能達(dá)到舉一反三的效果,對(duì)于類(lèi)似的習(xí)題一目了然,可以節(jié)約大量的解題時(shí)間。

  熟悉習(xí)題內(nèi)容

  解題、做練習(xí)只是學(xué)習(xí)過(guò)程中的一個(gè)環(huán)節(jié),而不是學(xué)習(xí)的全部,你不能為解題而解題。解題時(shí),我們的概念越清晰,對(duì)公式、定理和規(guī)則越熟悉,解題速度就越快。

  因此,我們?cè)诮忸}之前,應(yīng)通過(guò)閱讀教科書(shū)和做簡(jiǎn)單的練習(xí),先熟悉、記憶和辨別這些基本內(nèi)容,正確理解其涵義的本質(zhì),接著馬上就做后面所配的練習(xí),一刻也不要停留。

  學(xué)會(huì)主動(dòng)畫(huà)圖

  畫(huà)圖是一個(gè)翻譯的過(guò)程,把解題時(shí)的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫(huà)出來(lái),其中的關(guān)系就變得一目了然。尤其是對(duì)于幾何題,包括解析幾何題,若不會(huì)畫(huà)圖,有時(shí)簡(jiǎn)直是無(wú)從下手。

  因此,牢記各種題型的基本作圖方法,牢記各種函數(shù)的圖像和意義及演變過(guò)程和條件,對(duì)于提高解題速度非常重要。

  逐步增加難度

  人們認(rèn)識(shí)事物的過(guò)程都是從簡(jiǎn)單到復(fù)雜。簡(jiǎn)單的問(wèn)題解多了,從而使概念清晰了,對(duì)公式、定理以及解題步驟熟悉了,解題時(shí)就會(huì)形成跳躍性思維,解題的速度就會(huì)大大提高。

  我們?cè)趯W(xué)習(xí)時(shí),應(yīng)根據(jù)自己的能力,先去解那些看似簡(jiǎn)單,卻很重要的習(xí)題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會(huì)達(dá)到事半功倍的效果。

初二數(shù)學(xué)知識(shí)點(diǎn)12

  同類(lèi)項(xiàng)的概念:所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類(lèi)項(xiàng)。幾個(gè)常數(shù)項(xiàng)也叫同類(lèi)項(xiàng)。

  判斷幾個(gè)單項(xiàng)式或項(xiàng),是否是同類(lèi)項(xiàng)的兩個(gè)標(biāo)準(zhǔn):

  ①所含字母相同。②相同字母的次數(shù)也相同。

  判斷同類(lèi)項(xiàng)時(shí)與系數(shù)無(wú)關(guān),與字母排列的順序也無(wú)關(guān)。

  合并同類(lèi)項(xiàng)的概念:把多項(xiàng)式中的同類(lèi)項(xiàng)合并成一項(xiàng)叫做合并同類(lèi)項(xiàng)。

  合并同類(lèi)項(xiàng)的法則:同類(lèi)項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。

  合并同類(lèi)項(xiàng)步驟:

  ⑴.準(zhǔn)確的找出同類(lèi)項(xiàng)。

 、.逆用分配律,把同類(lèi)項(xiàng)的系數(shù)加在一起(用小括號(hào)),字母和字母的指數(shù)不變。

 、.寫(xiě)出合并后的結(jié)果。

  合并同類(lèi)項(xiàng)時(shí)注意:

  (1)如果兩個(gè)同類(lèi)項(xiàng)的系數(shù)互為相反數(shù),合并同類(lèi)項(xiàng)后,結(jié)果為0。

  (2)不要漏掉不能合并的項(xiàng)。

  (3)只要不再有同類(lèi)項(xiàng),就是結(jié)果(可能是單項(xiàng)式,也可能是多項(xiàng)式)。

  (4)不是同類(lèi)項(xiàng)千萬(wàn)不能進(jìn)行合并。

初二數(shù)學(xué)知識(shí)點(diǎn)13

  一、初中數(shù)學(xué)中考復(fù)習(xí)方法:

  數(shù)學(xué)家華羅庚曾經(jīng)說(shuō)過(guò):“聰明在于學(xué)習(xí),天才在于勤奮”,勤能補(bǔ)拙是良訓(xùn),一分辛勞一分才。

  1.復(fù)習(xí)一定要做到勤

  勤動(dòng)手:做題不要看,一定要算,不會(huì)的知識(shí)點(diǎn)寫(xiě)下來(lái),記在筆記本上。

  勤動(dòng)口:不會(huì)的有疑問(wèn)的一定要問(wèn)老師,時(shí)間不等人,在沒(méi)有時(shí)間可以浪費(fèi)。而且學(xué)會(huì)與同學(xué)討論問(wèn)題。

  勤動(dòng)耳:老師講的復(fù)習(xí)課一定要聽(tīng),不要認(rèn)為這道題會(huì),老師講就可以溜號(hào),須知溫故可知新。

  勤動(dòng)腦:善于思考問(wèn)題,積極思考問(wèn)題——吸收、儲(chǔ)存信息

  勤動(dòng)腿:不要參加過(guò)于激烈的運(yùn)動(dòng),防止受傷影響學(xué)習(xí),但要運(yùn)動(dòng),每天慢跑30分鐘即可,報(bào)至狀態(tài)。

  2.初中數(shù)學(xué)復(fù)習(xí)還要強(qiáng)調(diào)兩個(gè)要點(diǎn):

  一要:動(dòng)手,二要:動(dòng)腦。

  動(dòng)腦就是要學(xué)會(huì)觀(guān)察分析問(wèn)題,學(xué)會(huì)思考,不要拿到題就做,找到已知和未知之間的聯(lián)系,多問(wèn)幾個(gè)為什么,多體會(huì)考的哪個(gè)知識(shí)點(diǎn)。

  動(dòng)手就是多實(shí)踐,多做題,要拳不離手曲不離口。同學(xué)就是題不離手,這兩個(gè)要點(diǎn)大家要記住并且要堅(jiān)持住。動(dòng)腦又動(dòng)手,才能地發(fā)揮大腦的效率。這也是老師的經(jīng)驗(yàn)。

  3.用心做到三個(gè)一遍

  上課要認(rèn)真聽(tīng)一遍:聽(tīng)老師講的方法知識(shí)等。

  動(dòng)手算一遍:按照老師的思路算一遍看看是否融會(huì)貫通。

  認(rèn)真想一遍:想想為什么這么做題,考的哪個(gè)知識(shí)。

  4.重視簡(jiǎn)單的學(xué)習(xí)過(guò)程

  讀好一本教科書(shū)它是教學(xué)、中考的主要依據(jù);

  記好一本筆記方法知識(shí)是教師多年經(jīng)驗(yàn)的結(jié)晶,每人自己準(zhǔn)備一本錯(cuò)題集;

  做好做凈一本習(xí)題集它是使知識(shí)拓寬;

  這些看似平凡簡(jiǎn)單,但是確實(shí)老師親身的體驗(yàn),用心觀(guān)察我們的中考、高考狀元,其實(shí)他們每天重復(fù)的不就是老師剛剛說(shuō)的嗎?

  沒(méi)有寶典神功,只有普普通通。最最難能可貴的是堅(jiān)持。

  資源可以的話(huà),找?guī)滋淄鶎玫钠谀┛荚囶},是自己縣區(qū)的,其他縣區(qū)也可以(考點(diǎn)差不多一樣的),在規(guī)定時(shí)間內(nèi),摸摸底,熟悉每個(gè)章節(jié)考的的題型,練練自己的做題效率。很多同學(xué)第一次做練習(xí)出錯(cuò),如果不及時(shí)糾正、反思,而僅僅是把答案改正,那么他沒(méi)有真正地弄明白自己到底錯(cuò)在什么地方,也就沒(méi)弄明白如何應(yīng)用這部分知識(shí),最終會(huì)導(dǎo)致在今后遇到類(lèi)似的問(wèn)題一錯(cuò)再錯(cuò)。

初二數(shù)學(xué)知識(shí)點(diǎn)14

  1.對(duì)稱(chēng)軸:如果一個(gè)圖形沿某條直線(xiàn)折疊后,直線(xiàn)兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱(chēng)圖形;這條直線(xiàn)叫做對(duì)稱(chēng)軸。

  2.性質(zhì):

  (1)軸對(duì)稱(chēng)圖形的對(duì)稱(chēng)軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線(xiàn)段的垂直平分線(xiàn)。

  (2)角平分線(xiàn)上的點(diǎn)到角兩邊距離相等。

  (3)線(xiàn)段垂直平分線(xiàn)上的任意一點(diǎn)到線(xiàn)段兩個(gè)端點(diǎn)的距離相等。

  (4)與一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上。

  (5)軸對(duì)稱(chēng)圖形上對(duì)應(yīng)線(xiàn)段相等、對(duì)應(yīng)角相等。

  3.等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對(duì)等角)。

  4.等腰三角形的頂角平分線(xiàn)、底邊上的高、底邊上的中線(xiàn)互相重合,簡(jiǎn)稱(chēng)為“三線(xiàn)合一”。

  5.等腰三角形的判定:等角對(duì)等邊。

  6.等邊三角形角的特點(diǎn):三個(gè)內(nèi)角相等,等于60°。

  7.等邊三角形的判定:三個(gè)角都相等的三角形是等腰三角形。

  有一個(gè)角是60°的等腰三角形是等邊三角形。

  有兩個(gè)角是60°的三角形是等邊三角形。

  8.直角三角形中,30°角所對(duì)的直角邊等于斜邊的一半。

  9.直角三角形斜邊上的中線(xiàn)等于斜邊的一半。

初二數(shù)學(xué)知識(shí)點(diǎn)15

  知識(shí)要點(diǎn)

  1、含有未知數(shù)的等式叫方程,使方程左右兩邊的值相等的未知數(shù)的值叫方程的解。

  2、方程含有兩個(gè)未知數(shù),并且含有未知數(shù)的項(xiàng)的次數(shù)都是1,這樣的方程叫二元一次方程,二元一次方程的一般形式為(為常數(shù),并且)。使二元一次方程的左右兩邊的值相等的未知數(shù)的值叫二元一次方程的解,一個(gè)二元一次方程一般有無(wú)數(shù)組解。

  3、方程組含有兩個(gè)未知數(shù),并且含有未知數(shù)的項(xiàng)的次數(shù)都是1,這樣的方程組叫二元一次方程組。使二元一次方程組每個(gè)方程的左右兩邊的值相等的未知數(shù)的值叫二元一次方程組的解,一個(gè)二元一次方程組一般有一個(gè)解。

  4、用代入法解二元一次方程組的一般步驟:觀(guān)察方程組中,是否有用含一個(gè)未知數(shù)的式子表示另一個(gè)未知數(shù),如果有,則將它直接代入另一個(gè)方程中;如果沒(méi)有,則將其中一個(gè)方程變形,用含一個(gè)未知數(shù)的式子表示另一個(gè)未知數(shù);再將表示出的未知數(shù)代入另一個(gè)方程中,從而消去一個(gè)未知數(shù),求出另一個(gè)未知數(shù)的值,將求得的未知數(shù)的值代入原方程組中的任何一個(gè)方程,求出另外一個(gè)未知數(shù)的值。

  5、用加減法解二元一次方程組的一般步驟:(1)方程組的兩個(gè)方程中,如果同一個(gè)未知數(shù)的系數(shù)既不相等又不互為相反數(shù),就用適當(dāng)?shù)臄?shù)去乘方程的兩邊,使同一個(gè)未知數(shù)的系數(shù)相等或互為相反數(shù);(2)把兩個(gè)方程的兩邊分別相加或相減,消去一個(gè)未知數(shù);(3)解這個(gè)一元一次方程,求出一個(gè)未知數(shù)的值;(4)將求出的未知數(shù)的值代入原方程組中的任何一個(gè)方程,求出另外一個(gè)未知數(shù)的值,從而得到原方程組的解。

  6、解三元一次方程組的一般步驟:①觀(guān)察方程組中未知數(shù)的系數(shù)特點(diǎn),確定先消去哪個(gè)未知數(shù);②利用代入法或加減法,把方程組中的一個(gè)方程,與另外兩個(gè)方程分別組成兩組,消去同一個(gè)未知數(shù),得到一個(gè)關(guān)于另外兩個(gè)未知數(shù)的二元一次方程組;③解這個(gè)二元一次方程組,求得兩個(gè)未知數(shù)的值;④將這兩個(gè)未知數(shù)的值代入原方程組中較簡(jiǎn)單的一個(gè)方程中,求出第三個(gè)未知數(shù)的值,從而得到原三元一次方程組的解。

【初二數(shù)學(xué)知識(shí)點(diǎn)】相關(guān)文章:

初二數(shù)學(xué)的知識(shí)點(diǎn)07-05

初二數(shù)學(xué)實(shí)數(shù)知識(shí)點(diǎn)07-05

初二數(shù)學(xué)知識(shí)點(diǎn)07-05

人教版數(shù)學(xué)初二知識(shí)點(diǎn)07-05

初二數(shù)學(xué)《分式》知識(shí)點(diǎn)07-07

初二數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)06-19

初二數(shù)學(xué)知識(shí)點(diǎn)精選詳解07-08

初二數(shù)學(xué)勾股定理的知識(shí)點(diǎn)07-09

初二數(shù)學(xué)整式的乘法知識(shí)點(diǎn)07-11

初二數(shù)學(xué)分式知識(shí)點(diǎn)07-05