六年級數學上冊第三單元知識點
在平時的學習中,看到知識點,都是先收藏再說吧!知識點有時候特指教科書上或考試的知識。為了幫助大家掌握重要知識點,下面是小編幫大家整理的六年級數學上冊第三單元知識點,希望能夠幫助到大家。
六年級數學上冊第三單元知識點 1
一、認識圓
1、圓的定義:圓是由曲線圍成的一種平面圖形。
2、圓心:將一張圓形紙片對折兩次,折痕相交于圓中心的一點,這一點叫做圓心。
一般用字母O表示。它到圓上任意一點的距離都相等.
3、半徑:連接圓心到圓上任意一點的線段叫做半徑。一般用字母r表示。
把圓規(guī)兩腳分開,兩腳之間的距離就是圓的半徑。
4、直徑:通過圓心并且兩端都在圓上的線段叫做直徑。一般用字母d表示。
直徑是一個圓內最長的線段。
5、圓心確定圓的位置,半徑確定圓的大小。
6、在同圓或等圓內,有無數條半徑,有無數條直徑。所有的半徑都相等,所有的直徑都相等。
7.在同圓或等圓內,直徑的長度是半徑的2倍,半徑的長度是直徑的。用字母表示為:d=2r或r=。
8、軸對稱圖形:
如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。
折痕所在的這條直線叫做對稱軸。(經過圓心的任意一條直線或直徑所在的直線)
9、長方形、正方形和圓都是對稱圖形,都有對稱軸。這些圖形都是軸對稱圖形。
10、只有1一條對稱軸的圖形有:角、等腰三角形、等腰梯形、扇形、半圓。
只有2條對稱軸的圖形是:長方形。
只有3條對稱軸的圖形是:等邊三角形。
只有4條對稱軸的圖形是:正方形。
有無數條對稱軸的圖形是:圓、圓環(huán)。
二、圓的周長。
1、圓的周長:圍成圓的曲線的長度叫做圓的周長。用字母C表示。
2、圓周率實驗:
在圓形紙片上做個記號,與直尺0刻度對齊,在直尺上滾動一周,求出圓的周長。
發(fā)現一般規(guī)律,就是圓周長與它直徑的比值是一個固定數(π)。
3.圓周率:任意一個圓的周長與它的直徑的比值是一個固定的數,我們把它叫做圓周率。
用字母π(pai)表示。
(1)、一個圓的周長總是它直徑的3倍多一些,這個比值是一個固定的數。
圓周率π是一個無限不循環(huán)小數。在計算時,一般取π≈3.14。
(2)、在判斷時,圓周長與它直徑的比值是π倍,而不是3.14倍。
(3)、世界上第一個把圓周率算出來的人是我國的數學家祖沖之。
4、圓的周長公式:C=πdd=C÷π或C=2πrr=C÷2π。
5、在一個正方形里畫一個最大的圓,圓的直徑等于正方形的邊長。
在一個長方形里畫一個最大的圓,圓的直徑等于長方形的.寬。
6、區(qū)分周長的一半和半圓的周長:
(1)周長的一半:等于圓的周長÷2計算方法:2πr÷2即πr
(2)半圓的周長:等于圓的周長的一半加直徑。計算方法:πr+2r。
三、圓的面積
1、圓的面積:圓所占平面的大小叫做圓的面積。用字母S表示。
2、一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。頂點在圓心的角叫做圓心角。
3、圓面積公式的推導:
(1)、用逐漸逼近的轉化思想:體現化圓為方,化曲為直;化新為舊,化未知為已知,化復雜為簡單,化抽象為具體。
(2)、把一個圓等分(偶數份)成的扇形份數越多,拼成的圖像越接近長方形。
(3)、拼出的圖形與圓的周長和半徑的關系。
圓的半徑=長方形的寬。
圓的周長的一半=長方形的長。
因為:長方形面積=長×寬。
所以:圓的面積=圓周長的一半×圓的半徑。
S圓=πr×r。
圓的面積公式:S圓=πr2。
4、環(huán)形的面積:
一個環(huán)形,外圓的半徑是R,內圓的半徑是r。(R=r+環(huán)的寬度.)。
S環(huán)=πR-πr 或環(huán)形的面積公式:S環(huán)=π(R-r)。
5、一個圓,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數。
而面積擴大或縮小的倍數是這倍數的平方倍。例如:在同一個圓里,半徑擴大3倍,那么直徑和周長就都擴大3倍,而面積擴大9倍。
6、兩個圓:半徑比=直徑比=周長比;而面積比等于這比的平方。
例如:兩個圓的半徑比是2∶3,那么這兩個圓的直徑比和周長比都是2∶3,而面積比是4∶9。
7、任意一個正方形與它內切圓的面積之比都是一個固定值,即:4∶π。
8、當長方形,正方形,圓的周長相等時,圓面積最大,正方形居中,長方形面積最小。反之,面積相同時,長方形的周長最長,正方形居中,圓周長最短。
9、確定起跑線:
(1)、每條跑道的長度=兩個半圓形跑道合成的圓的周長+兩個直道的長度。
(2)、每條跑道直道的長度都相等,而各圓周長決定每條跑道的總長度。(因此起跑線不同)。
(3)、每相鄰兩個跑道相隔的距離是:2×π×跑道的寬度。
(4)、當一個圓的半徑增加a厘米時,它的周長就增加2πa厘米;當一個圓的直徑增加a厘米時,它的周長就增加πa厘米。
10、常用各π值結果:
π=3.14
2π=6.28
3π=9.42
5π=15.7
6π=18.84
7π=21.98
9π=28.26
10π=31.4
16π=50.24
36π=113.04
64π=200.96
96π=301.44
4π=12.568π=25.1225π=78.5
11、常用平方數結果=121=144=169=196=225=256=289=324=361。
六年級數學上冊第三單元知識點 2
第一章三角函數
1.1任意角和弧度制
正角、負角、零角正角、負角、零角
象限角、軸線角象限角、軸線角
終邊相同的角終邊相同的角
弧度制、弧度與角度的互化弧度制、弧度與角度的互化
1.2任意角的三角函數
任意角的三角函數任意角的三角函數
三角函數線(正弦線、余弦線、正切線)三角函數線(正弦線、余弦線、正切線)
同角三角函數的基本關系式同角三角函數的基本關系式
1.3三角函數的誘導公式
三角函數的誘導公式三角函數的誘導公式
1.4三角函數的圖象與性質
正弦、余弦函數的圖象與性質(定義域、值域、單調性、奇偶性等)正弦、余弦函數的圖象與性質(定義域、值域、單調性、奇偶性等)
正切、余切函數的圖象與性質(定義域、值域、單調性、奇偶性等)正切、余切函數的圖象與性質(定義域、值域、單調性、奇偶性等)
1.5函數y=Asin(ωxφ)的圖象
函數y=Asin(ωxφ)的圖象與性質函數y=Asin(wx φ)的圖象與性質
1.6三角函數模型的簡單應用
第二章平面向量
2.1平面向量的實際背景及基本概念
向量的概念及幾何表示向量的概念及幾何表示
零向量與單位向量零向量與單位向量
相等向量與共線向量的.定義相等向量與共線向量的定義
2.2平面向量的線性運算
向量的加、減法運算及幾何意義向量的加、減法運算及幾何意義
向量數乘運算及幾何意義向量數乘運算及幾何意義
向量的線性運算及坐標表示向量的線性運算及坐標表示
2.3平面向量的基本定理及坐標表示
平面向量基本定理及坐標表示平面向量基本定理及坐標表示
向量共線的充要條件及坐標表示向量共線的充要條件及坐標表示
2.4平面向量的數量積
向量數量積的含義及幾何意義向量數量積的含義及幾何意義
向量數量積的運算向量數量積的運算
用數量積判斷兩個向量的垂直關系用數量積判斷兩個向量的垂直關系
用坐標表示向量的數量積用坐標表示向量的數量積
向量模的計算向量模的計算
用數量積表示兩個向量的夾角用數量積表示兩個向量的夾角
2.5平面向量應用舉例
平面向量的應用平面向量的應用
第三章三角恒等變換
3.1兩角和與差的正弦、余弦和正切公式
兩角和與差的三角函數及三角恒等變換兩角和與差的三角函數及三角恒等變換
3.2簡單的三角恒等變換
兩角和與差的三角函數及三角恒等變換
【六年級數學上冊第三單元知識點】相關文章:
數學六年級上冊第三單元知識點10-24
五年級上冊數學第三單元知識點11-16
六年級數學上冊第三單元分數除法知識點10-08
語文六年級上冊第三單元的知識點總結10-21
二年級上冊數學第三單元知識點07-29
小學五年級上冊數學第三單元知識點11-04
五年級數學第三單元上冊知識點整理10-20
四年級上冊數學第三單元知識點11-09
六年級數學第三單元知識點歸納04-02