亚欧洲精品在线观看,窝窝影院午夜看片,久久国产成人午夜av影院宅,午夜91,免费国产人成网站,ts在线视频,欧美激情在线一区

高一數(shù)學(xué)必修4知識點總結(jié)

時間:2024-07-22 23:05:26 文圣 數(shù)學(xué) 我要投稿
  • 相關(guān)推薦

高一數(shù)學(xué)必修4知識點總結(jié)

  在平日的學(xué)習(xí)中,大家最熟悉的就是知識點吧?知識點就是學(xué)習(xí)的重點。掌握知識點有助于大家更好的學(xué)習(xí)。下面是小編為大家收集的高一數(shù)學(xué)必修4知識點總結(jié),供大家參考借鑒,希望可以幫助到有需要的朋友。

高一數(shù)學(xué)必修4知識點總結(jié)

  三角函數(shù)

  【公式一】

  設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

  sin(2kπ+α)=sinα(k∈Z)

  cos(2kπ+α)=cosα(k∈Z)

  tan(2kπ+α)=tanα(k∈Z)

  cot(2kπ+α)=cotα(k∈Z)

  【公式二】

  設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  【公式三】

  任意角α與-α的三角函數(shù)值之間的關(guān)系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  【公式四】

  利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  【公式五】

  利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  【公式六】

  π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  (以上k∈Z)

  函數(shù)

  求函數(shù)的解析式一般有四種情況

  (1)根據(jù)某實際問題需建立一種函數(shù)關(guān)系時,必須引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識尋求函數(shù)的解析式.

  (2)有時題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法.比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可.

  (3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達式時,可用換元法求函數(shù)f(x)的表達式,這時必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域.

  (4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(-x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達式.

  映射、函數(shù)、反函數(shù)

  1、對應(yīng)、映射、函數(shù)三個概念既有共性又有區(qū)別,映射是一種特殊的對應(yīng),而函數(shù)又是一種特殊的映射.

  2、對于函數(shù)的概念,應(yīng)注意如下幾點:

  (1)掌握構(gòu)成函數(shù)的三要素,會判斷兩個函數(shù)是否為同一函數(shù).

  (2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數(shù)關(guān)系式,特別是會求分段函數(shù)的解析式.

  (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù).

  3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:

  (1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;

  (2)由y=f(x)的解析式求出x=f-1(y);

  (3)將x,y對換,得反函數(shù)的習(xí)慣表達式y(tǒng)=f-1(x),并注明定義域.

  注意

 、賹τ诜侄魏瘮(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起.

  ②熟悉的應(yīng)用,求f-1(x0)的值,合理利用這個結(jié)論,可以避免求反函數(shù)的過程,從而簡化運算.

  立體幾何初步

  (1)棱柱:

  定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱

  幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點字母,如五棱錐

  幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

  (3)棱臺:

  定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等

  表示:用各頂點字母,如五棱臺

  幾何特征:

  ①上下底面是相似的平行多邊形

 、趥(cè)面是梯形

  ③側(cè)棱交于原棱錐的頂點

  (4)圓柱:

  定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

  幾何特征:

 、俚酌媸侨鹊膱A;

  ②母線與軸平行;

 、圯S與底面圓的半徑垂直;

 、軅(cè)面展開圖是一個矩形。

  (5)圓錐:

  定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體

  幾何特征:

 、俚酌媸且粋圓;

 、谀妇交于圓錐的頂點;

 、蹅(cè)面展開圖是一個扇形。

  (6)圓臺:

  定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:

  ①上下底面是兩個圓;

 、趥(cè)面母線交于原圓錐的頂點;

  ③側(cè)面展開圖是一個弓形。

  (7)球體:

  定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:

 、偾虻慕孛媸菆A;

 、谇蛎嫔先我庖稽c到球心的距離等于半徑。

  復(fù)數(shù)的概念:

  形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。

  復(fù)數(shù)的表示:

  復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實部,b叫復(fù)數(shù)的虛部。

  復(fù)數(shù)的幾何意義:

 。1)復(fù)平面、實軸、虛軸:

  點Z的橫坐標(biāo)是a,縱坐標(biāo)是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)

 。2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點所成的集合是一一對應(yīng)關(guān)系,即

  這是因為,每一個復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個點和它對應(yīng);反過來,復(fù)平面內(nèi)的每一個點,有惟一的一個復(fù)數(shù)和它對應(yīng)。

  這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。

  復(fù)數(shù)的模:

  復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)平面上對應(yīng)的點Z(a,b)到原點的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=

  虛數(shù)單位i:

 。1)它的平方等于—1,即i2=—1;

 。2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立

 。3)i與—1的關(guān)系:i就是—1的一個平方根,即方程x2=—1的一個根,方程x2=—1的另一個根是—i。

 。4)i的周期性:i4n+1=i,i4n+2=—1,i4n+3=—i,i4n=1。

  復(fù)數(shù)模的性質(zhì):

  復(fù)數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:

  對于復(fù)數(shù)a+bi(a、b∈R),當(dāng)且僅當(dāng)b=0時,復(fù)數(shù)a+bi(a、b∈R)是實數(shù)a;當(dāng)b≠0時,復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時,z=bi叫做純虛數(shù);當(dāng)且僅當(dāng)a=b=0時,z就是實數(shù)0。

  兩個復(fù)數(shù)相等的定義:

  如果兩個復(fù)數(shù)的實部和虛部分別相等,那么我們就說這兩個復(fù)數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di

  a=c,b=d。特殊地,a,b∈R時,a+bi=0

  a=0,b=0。

  復(fù)數(shù)相等的充要條件,提供了將復(fù)數(shù)問題化歸為實數(shù)問題解決的途徑。

  復(fù)數(shù)相等特別提醒:

  一般地,兩個復(fù)數(shù)只能說相等或不相等,而不能比較大小。如果兩個復(fù)數(shù)都是實數(shù),就可以比較大小,也只有當(dāng)兩個復(fù)數(shù)全是實數(shù)時才能比較大小。

  解復(fù)數(shù)相等問題的方法步驟:

 。1)把給的復(fù)數(shù)化成復(fù)數(shù)的標(biāo)準(zhǔn)形式;

 。2)根據(jù)復(fù)數(shù)相等的充要條件解之。

  數(shù)學(xué)學(xué)習(xí)技巧

  1、做好預(yù)習(xí):

  單元預(yù)習(xí)時粗讀,了解近階段的學(xué)習(xí)內(nèi)容,課時預(yù)習(xí)時細(xì)讀,注重知識的形成過程,對難以理解的概念、公式和法則等要做好記錄,以便帶著問題聽課。

  2、認(rèn)真聽課:

  聽課應(yīng)包括聽、思、記三個方面。聽,聽知識形成的來龍去脈,聽重點和難點,聽例題的解法和要求。思,一是要善于聯(lián)想、類比和歸納,二是要敢于質(zhì)疑,提出問題。記,指課堂筆記——記方法,記疑點,記要求,記注意點。

  3、認(rèn)真解題:

  課堂練習(xí)是最及時最直接的反饋,一定不能錯過。不要急于完成作業(yè),要先看看你的筆記本,回顧學(xué)習(xí)內(nèi)容,加深理解,強化記憶。

  4、及時糾錯:

  課堂練習(xí)、作業(yè)、檢測,反饋后要及時查閱,分析錯題的原因,必要時強化相關(guān)計算的訓(xùn)練。不明白的問題要及時向同學(xué)和老師請教了,不能將問題處于懸而未解的狀態(tài),養(yǎng)成今日事今日畢的好習(xí)慣。

  數(shù)學(xué)中的合數(shù)是什么意思?

  合數(shù)的概念

  合數(shù)指自然數(shù)中除了能被1和本身整除外,還能被其他數(shù)(0除外)整除的數(shù)。與之相對的是質(zhì)數(shù),而1既不屬于質(zhì)dao數(shù)也不屬于合數(shù)。最小的合數(shù)是4。其中,完全數(shù)與相親數(shù)是以它為基礎(chǔ)的。

  什么是質(zhì)數(shù)

  質(zhì)數(shù)又稱素數(shù),有無限個。一個大于1的自然數(shù),除了1和它本身外,不能被其他自然數(shù)整除,換句話說就是該數(shù)除了1和它本身以外不再有其他的因數(shù);否則稱為合數(shù)。

  根據(jù)算術(shù)基本定理,每一個比1大的整數(shù),要么本身是一個質(zhì)數(shù),要么可以寫成一系列質(zhì)數(shù)的乘積;而且如果不考慮這些質(zhì)數(shù)在乘積中的順序,那么寫出來的形式是唯一的。最小的質(zhì)數(shù)是2。

  質(zhì)數(shù)和合數(shù)應(yīng)用

  1、質(zhì)數(shù)與密碼學(xué):所謂的公鑰就是將想要傳遞的信息在編碼時加入質(zhì)數(shù),編碼之后傳送給收信人,任何人收到此信息后,若沒有此收信人所擁有的密鑰,則解密的過程中(實為尋找素數(shù)的過程),將會因為找質(zhì)數(shù)的過程(分解質(zhì)因數(shù))過久,使即使取得信息也會無意義。

  2、質(zhì)數(shù)與變速箱:在汽車變速箱齒輪的設(shè)計上,相鄰的兩個大小齒輪齒數(shù)設(shè)計成質(zhì)數(shù),以增加兩齒輪內(nèi)兩個相同的齒相遇嚙合次數(shù)的最小公倍數(shù),可增強耐用度減少故障。

  數(shù)學(xué)函數(shù)的值域與最值知識點

  1、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:

  (1)直接法:亦稱觀察法,對于結(jié)構(gòu)較為簡單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.

  (2)換元法:運用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時用代數(shù)換元,當(dāng)根式里是二次式時,用三角換元.

  (3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.

  (4)配方法:對于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法.

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時需用到平方等技巧.

  (6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.

  (7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.

  (8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.

  2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系

  求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質(zhì)是相同的,只是提問的角度不同,因而答題的方式就有所相異.

  如函數(shù)的值域是(0,16],最大值是16,無最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無最大值和最小值,只有在改變函數(shù)定義域后,如x>0時,函數(shù)的最小值為2.可見定義域?qū)瘮?shù)的值域或最值的影響.

  3、函數(shù)的最值在實際問題中的應(yīng)用

  函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識求解實際問題上,從文字表述上常常表現(xiàn)為“工程造價最低”,“利潤最大”或“面積(體積)最大(最小)”等諸多現(xiàn)實問題上,求解時要特別關(guān)注實際意義對自變量的制約,以便能正確求得最值.

  基本初等函數(shù)有哪些

  基本初等函數(shù)包括以下幾種:

  (1)常數(shù)函數(shù)y = c( c為常數(shù))

  (2)冪函數(shù)y = x^a( a為常數(shù))

  (3)指數(shù)函數(shù)y = a^x(a>0, a≠1)

  (4)對數(shù)函數(shù)y =log(a) x(a>0, a≠1,真數(shù)x>0)

  (5)三角函數(shù)以及反三角函數(shù)(如正弦函數(shù):y =sinx反正弦函數(shù):y = arcsin x等)

  基本初等函數(shù)性質(zhì)是什么

  冪函數(shù)

  形如y=x^a的函數(shù),式中a為實常數(shù)。

  指數(shù)函數(shù)

  形如y=a^x的函數(shù),式中a為不等于1的正常數(shù)。

  對數(shù)函數(shù)

  指數(shù)函數(shù)的反函數(shù),記作y=loga a x,式中a為不等于1的正常數(shù)。指數(shù)函數(shù)與對數(shù)函數(shù)之間成立關(guān)系式,loga ax=x。

  三角函數(shù)

  即正弦函數(shù)y=sinx,余弦函數(shù)y=cosx,正切函數(shù)y=tanx,余切函數(shù)y=cotx,正割函數(shù)y=secx,余割函數(shù)y=cscx(見三角學(xué))。

  反三角函數(shù)

  三角函數(shù)的反函數(shù)——反正弦函數(shù)y = arc sinx,反余弦函數(shù)y=arc cosx (-1≤x≤1,初等函數(shù)0≤y≤π),反正切函數(shù)y=arc tanx,反余切函數(shù)y = arc cotx(-∞

【高一數(shù)學(xué)必修4知識點總結(jié)】相關(guān)文章:

高一數(shù)學(xué)必修1知識點總結(jié)03-23

高一數(shù)學(xué)必修一知識點總結(jié)03-24

高一數(shù)學(xué)必修一知識點05-14

高一數(shù)學(xué)必修一知識點難點03-16

人教版高一數(shù)學(xué)必修一知識點12-21

高一數(shù)學(xué)必修2各章知識點02-18

高一必修一數(shù)學(xué)知識點整理08-02

高一數(shù)學(xué)必修書有哪些知識點03-06

數(shù)學(xué)必修四知識點02-13

高一語文必修一知識點總結(jié)03-19