亚欧洲精品在线观看,窝窝影院午夜看片,久久国产成人午夜av影院宅,午夜91,免费国产人成网站,ts在线视频,欧美激情在线一区

教學設計

分數(shù)的基本性質教學設計優(yōu)秀

時間:2025-03-13 17:30:23 教學設計 我要投稿
  • 相關推薦

分數(shù)的基本性質教學設計優(yōu)秀

  在教學工作者開展教學活動前,編寫教學設計是必不可少的,教學設計是連接基礎理論與實踐的橋梁,對于教學理論與實踐的緊密結合具有溝通作用。那么什么樣的教學設計才是好的呢?以下是小編為大家整理的分數(shù)的基本性質教學設計優(yōu)秀,歡迎閱讀,希望大家能夠喜歡。

分數(shù)的基本性質教學設計優(yōu)秀

分數(shù)的基本性質教學設計優(yōu)秀1

  教學內容:人教版新課標教科書小學數(shù)學第十冊75~77頁例

  1、例2.教學目標:1知識與技能目標:

 。1)經歷探索分數(shù)的基本性質的過程,理解分數(shù)的基本性質。

  (2)能運用分數(shù)的基本性質,把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

  2、過程與方法目標:

 。1)經歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數(shù)的基本性質做出簡要的、合理的說明。(2)培養(yǎng)學生的觀察、比較、歸納、總結概括能力。

 。3)能根據(jù)解決的需要,收集有用的信息進行歸納,發(fā)展學生歸納、推理能力。

  3、情感態(tài)度與價值觀目標:

 。1)經歷觀察、操作和討論等數(shù)學學習活動,使學生進一步體驗數(shù)學學習的樂趣。(2)鼓勵學生敢于發(fā)現(xiàn)問題,培養(yǎng)學生敢于解決問題的學習品質。

  教學重點:探索、發(fā)現(xiàn)和掌握分數(shù)的基本性質,并能運用分數(shù)的基本性質解決問題。教學難點:自主探究、歸納概括分數(shù)的基本性質。教學準備:學生準備一張正方形的紙,課件教學過程:

  一、故事導入。

  師:同學們,你們喜歡看《喜羊羊與灰太狼》的動畫片嗎?生:喜歡。

  師:老師這里有一個慢羊羊分餅的故事,羊村的小羊最喜歡吃村長做得餅。一天,村子做了三塊大小一樣的餅分給小羊們吃,他把第一塊餅的1/2分給懶羊羊,再把二塊餅的2/4分給喜羊羊,最后把第三塊餅的4/8分給美羊羊,懶羊羊不高興地說:"村長不公平,他們的多,我的少。”(師邊說邊板書分數(shù))同學們,村長公平嗎?他們那個多,那個少?

  生:公平,其實他們分得一樣多。

  師:到底你們的猜想是否正確呢?讓我們來驗證一下!

  二、探究新知,解決問題:1、小組合作,驗證猜想:(1)玩一玩,比一比.(讀要求)師:我們現(xiàn)在小組合作來玩一玩,比一比.(出示要求)

  師:(讀要求)現(xiàn)在開始.(學生匯報)師:你們發(fā)現(xiàn)了什么?

  生1:老師,我們通過比較這三幅圖的陰影部分完全重合,那這三個分數(shù)都相等。(師在分數(shù)上畫符號)

  生2:老師,我們通過比較這三幅圖的陰影部分完全重合,那這三個分數(shù)都相等。(出示課件演示)

 。、初步概括分數(shù)的基本性質.(2)算一算,找一找.師:(提問)同學們觀察一下,這三個分母什么變了?什么沒變?生1:它們的分子和分母變化了,但分數(shù)的大小沒變。生2:它們的分子和分母變化了,但分數(shù)的大小沒變。

  師:這三個分數(shù)的分子和分母都不相同,為什么分數(shù)的大小都相等呢?同學們思考一下。

  生1:它們的分子和分母都乘相同的數(shù)。生2:它們的分子和分母都除以相同的數(shù)。

  師:那同學們的猜想是否正確呢?它們的變化規(guī)律又是怎樣呢?我們小組合作觀察討論。并把發(fā)現(xiàn)的規(guī)律寫下來。

 。ǔ鍪菊n件)

  小組匯報:(歸納規(guī)律)

  師:哪一組把你們討論的結果匯報一下,從左往右觀察,你們發(fā)現(xiàn)了什么?生1:從左往右觀察,我們發(fā)現(xiàn)1/2的分子和分母同時乘2,分數(shù)的大小不變。生2:從左往右觀察,我們發(fā)現(xiàn)1/2的分子和分母同時除以4,分數(shù)的大小不變。師:你們是這樣想的,既然這樣,那么分子和分母同時乘5,分數(shù)的的大小改變,嗎?生:不變。

  師:同時乘

  6.8呢?生:不變。

  師:那你們能不能根據(jù)這個式子來總結一下規(guī)律呢?

  生1:一個分數(shù)的分子和分母同時乘相同的數(shù),分數(shù)的大小不變。生2:一個分數(shù)的分子和分母同時乘相同的數(shù),分數(shù)的大小不變。師:(板書)誰來舉這樣一個例子?生:......

  師:這樣的例子,我們可以舉很多,剛才我們是從左往右觀察,從右往左觀察,哪一組匯報一下。

  生:從右往左觀察,我們發(fā)現(xiàn)了,4/8的分子和分母同時除以2,得到了2/4,分數(shù)2/4的分子和分母同時除以2得到分數(shù)1/2,他們的分數(shù)的大小不變。

  生:從右往左觀察,我們發(fā)現(xiàn)了,4/8的分子和分母同時除以2,得到了2/4,分數(shù)2/4的分子和分母同時除以2得到分數(shù)1/2,他們的分數(shù)的`大小不變。(師課件演示)

  師:你們是這樣想的,既然這樣,那么分子和分母同時除以5,分數(shù)的的大小改變,嗎?生:不變。

  師:同時除以

  6.8呢?生:不變。

  師:那你們能不能根據(jù)這個式子來總結一下規(guī)律呢?

  生1:一個分數(shù)的分子和分母同時除以相同的數(shù),分數(shù)的大小不變。生2:一個分數(shù)的分子和分母同時除以相同的數(shù),分數(shù)的大小不變。師:(板書)誰來舉這樣一個例子?生舉例

 。、強調規(guī)律

  師:我把兩句話合成了一句話,根據(jù)分數(shù)的這一變化規(guī)律,你認為下面的式子對嗎?(課件出示)

  生:回答,錯的,因為分數(shù)的分子、分母沒有乘相同的數(shù)。師:(在黑板上圈出)對必須乘相同的數(shù)。

  生:錯,因為分子乘2,分母沒有乘2,分子和分母沒有同時乘。師:(在黑板上圈出)對必須同時乘。

  師:分數(shù)的分子、分母都乘或除以相同的數(shù),分數(shù)的大小不變,這里“相同的數(shù)”是不是任何數(shù)都可以呢?我們看一看(課件出示)師:這個式子成立嗎?

  生:不成立,因為0不能做除數(shù),4乘0得0是分母,分母相當于除數(shù),所以這個式子是錯誤的。

  師:我不乘0,我除以0可以么?生:不成立,因為0不能作除數(shù)。

  師:同學們不錯,這兩個式子都不成立,我們剛才總結的分子、分母同時乘或除以相同的數(shù),這相同的數(shù)必須(生:0除外)(師板書)

  師:這一變化規(guī)律就是我們這節(jié)課學習的內容,分數(shù)的基本性質,(板書課題)在這一規(guī)律里,需要我們注意的是:(生:同時、相同的數(shù)、0除外)

  師:我相信懶羊羊學習了分數(shù)的基本性質,那就不會生氣了它知道(出示課件)一樣多,咱們同學們千萬不要犯它同樣的錯誤了,我們把這一條規(guī)律讀兩遍,并記下它。(生讀規(guī)律)

  師:學習了分數(shù)的基本性質,我想利用你們的火眼金睛,當一當小法官(出示課件)

  生:(讀題,用手勢表示對、錯,并說出原因)

  三、運用規(guī)律,自學例題1、學習例2師:這個分數(shù)的基本性質特別的有用,我們可以根據(jù)分數(shù)的基本性質把一個分數(shù)化成和它相等的另外一個分數(shù),我們一起去看一看。(課件出示例題)學生讀題

  師:分子、分母應該怎樣變化?變化的依據(jù)是什么?小組內討論一下(學生討論)師:誰來說一說?

  生:2/3的分子分母同時乘4得到8/12,變化的依據(jù)是分數(shù)的基本性質。生:10/24的分子和分母同時除以2,得到5/12,變化的依據(jù)是分數(shù)的基本性質。師:回答得不錯,自己獨立完成這題。

  師:(巡視)請一名學生說出答案,(生說,師出示答案)

  四、分數(shù)的基本性質與商不變的性質

  師:分數(shù)的基本性質作用可大了,那大家回想一下,這與我們以前學習的除法里面哪一個性質相似?生:商不變的性質。

  師:除法里商不變的性質是怎么說的?

  生:被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù)(0除外),商不變。師:你們能否用商不變的性質來說明分數(shù)的基本性質?小組內討論一下。

  小組討論

  師:哪一組把討論的結果匯報一下。

  生:在分數(shù)里,被除數(shù)相當于分子,除數(shù)相當與分母,被除數(shù)與除數(shù)同時擴大或縮小相同的倍數(shù),就相當于分子、分母同時乘或除以相同的數(shù)(0除外),因此,商不變就相當于分數(shù)的大小不變。(師板書)

  師:既然能用商不變的性質來說一說分數(shù)的基本性質,那我們來小試牛刀。(出示課件)

  生:5除以10等于1/2,當被除數(shù)5縮小5倍就相當于分子除以5,分子除以5,分母也除以5,所以10除以5得2.生:12除以24等于4/8,當除數(shù)24除以3得8就相當于分母除以3,分母除以3分子也除以3,12除以3得4.五、課堂運用。1、跨欄高手

  師:同學們的回答簡直太棒了,那你們有資格讓老師把你們帶到運動場去當跨欄高手了。(出示課件)

  師:(學生回答三題)同學們這么大的數(shù)一下子就得出結果,有什么秘訣嗎?生:用大數(shù)除以小數(shù),就知道分母、分子擴大了幾倍.2、拓展延伸:

  師:當了跨欄高手,我們的成績非常的好,那我們就到羊村去玩吧,來到羊村,慢羊羊讓大家當村長,解決難題,你們敢接招嗎?生:敢

  師:(出示課件)那我們就要小組為單位,開始玩游戲。小組匯報結果

  六、撿拾碩果

  看到同學們這么自信的回答,老師知道今天大家的收獲不少,說一說這節(jié)課你都收獲了哪些?生說

  師:同學們,表現(xiàn)得太好了,這節(jié)課,老師從你們的身上也學到了許多,謝謝你們,下課!

分數(shù)的基本性質教學設計優(yōu)秀2

  教學目標

  1、學生能理解和掌握分數(shù)的基本性質,知道分數(shù)的基本性質與整數(shù)除法中商不變的性質之間的聯(lián)系。

  2、學生能運用分數(shù)的基本性質把一個分數(shù)化成分母不同而大小相等的分數(shù)。

  3、培養(yǎng)學生觀察、比較、抽象概括的邏輯思維能力,滲透“事物之間是相互聯(lián)系的”辯證唯物主義觀點。

  教學重、難點:

  理解分數(shù)基本性質的含義,掌握分數(shù)基本性質的推導過程。運用分數(shù)的基本性質解決實際問題。

  教學過程:

  一、復習舊知,了解學習起點

  二、創(chuàng)設情境,激趣引入

  課件動畫顯示:藍貓、菲菲、霸王龍最喜歡吃淘氣做的餅。有一天淘氣做了3塊大小一樣的餅分給藍貓、菲菲、霸王龍。藍貓說:“我功勞最大,我要吃一大塊!狈品普f:“我要吃兩塊。”霸王龍搶著說:“我個頭最大,我要吃3塊。”淘氣想了想便動手切餅滿足了他們的要求,并向他們提問:“剛才,我把3個同樣大小的餅,平均分成2份、4份、6份,分別給了你們1塊、2塊、3塊,你們知道誰吃的多嗎?”淘氣的問題,立刻引起了他們的爭論。同學們,你們知道他們誰吃得多嗎?

  三、探究新知,揭示規(guī)律

  1.動手操作,形象感知。

  (1)折。請學生拿出3張同樣大小的圓形紙,把每張圓形紙都看做單位“1”,用手分別平均折成2份、4份、6份。

 。2)畫。在折好的圓形紙上,分別把其中的1份、2份、3份畫上陰影。

 。3)剪。把圓中的陰影部分剪下來。

  (4)比。把剪下的陰影部分重疊,比一比結果怎樣。

  2.觀察比較,探究規(guī)律。

  (1)通過動手操作,誰能說一說動畫片中藍貓、菲菲、霸王龍各吃了一個餅的'幾分之幾?(板書。)

  (2)你認為他們誰吃的多?請到講臺上一邊演示一邊講一講。

  學生匯報后,教師用電腦演示。

  把3塊同樣大小的餅分別平均分成2份、4份、6份,依次表示。把平移、重疊,明顯地看出塊餅、塊餅、塊餅大小相等。通過分餅、觀察、驗證得出結論:“藍貓、菲菲、霸王龍分的餅一樣多!

  (3)既然他們3個吃的同樣多,那么、的大小怎樣?我們可以用什么符號把他們連接起來?(板書。)

  (4)聰明的淘氣是用什么辦法既滿足藍貓、菲菲、霸王龍的要求,又分得那么公平呢?這就是我們今天研究的內容“分數(shù)的基本性質”。(板書課題。)

 。5)這3個分數(shù)的分子、分母都不同,為什么分數(shù)的大小卻相等?你們能找出它們的變化規(guī)律嗎?請同學們4人為一組,討論這幾個問題。(課件出示討論題。)

  討論題:

 、偎鼈冎g有什么關系?它們的什么變了?什么沒有變?

 、趶淖笸铱,是按照什么規(guī)律變化的?從右往左看,又是按照什么規(guī)律變化的呢?

 。6)學生匯報,師生討論情況。

  師:這3個分數(shù)是相等的關系?梢詫懗桑鼈兊姆肿、分母變了,而分數(shù)的大小沒有變。

  師:從左往右看,由得到,是把的分子、分母都乘以2,也就是把分的份數(shù)和表示的份數(shù)都擴大2倍,就得到。同理的分子、分母都乘以3,就得到,而分數(shù)的大小不變。(板書:都乘以相同的數(shù)。)

  從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析,比較,,得出:分數(shù)的分子和分母都除以相同的數(shù),分數(shù)的大小不變。

  (7)抓住焦點,辨中求真。

  的分子、分母能否同時乘以或者除以零呢?圍繞這個問題展開討論、辯論。通過討論、爭辯,使學生認識到“因為分數(shù)的分子、分母都乘以0,則分數(shù)成為”。

分數(shù)的基本性質教學設計優(yōu)秀3

  教學要求

  ①使學生理解分數(shù)的基本性質,并會應用分數(shù)的基本性質把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。

 、谂囵B(yǎng)學生觀察、分析和抽象概括能力。

 、蹪B透“事物之間是相互聯(lián)系”的辯證唯物主義觀點。

  教學重點理解分數(shù)的基本性質。

  教學用具每位學生準備三張同樣的長方形紙條;教師:紙條、投影片等。

  教學過程

  一、創(chuàng)設情境

  1.120÷30的商是多少?被除數(shù)和除數(shù)都擴大3倍,商是多少?被除數(shù)和除數(shù)都縮小10倍呢?

  2.說一說:

 。1)商不變的性質是什么?

 。2)分數(shù)與除法的關系是什么?

  3.填空。

  1÷2(1×2)÷(2×2)=。

  二、揭示課題

  讓學生大膽猜測:在除法里有商不變的性質,在分數(shù)里會不會也有類似的性質存在呢?這個性質是什么呢?

  隨著學生的回答,教師板書課題:分數(shù)的基本性質。

  三、探索研究

  1.動手操作,驗證性質。

 。1)讓學生拿出三張同樣的長方形紙條,分別平均分成2份、4份、6份,并分別把其中的1份、2份、3份涂上色,把涂色的部分用分數(shù)表示出來。

 。2)觀察比較后引導學生得出:

 。3)從左往右看:

  由變成,平均分的份數(shù)和表示的份數(shù)有什么變化?

  把平均分的份數(shù)和表示的份數(shù)都乘以2,就得到,即(板書)。

  把平均分的份數(shù)和表示的份數(shù)都乘以3,就得到,即:(板書)。

  引導學生初步小結得出:分數(shù)的分子、分母同時乘以相同的數(shù),分數(shù)的大小不變。

 。4)從右往左看:

  引導學生觀察明確:的分子、分母同時除以2,得到。同理,的分子、分母同時除以3,也可以得到。

  讓學生再次歸納:分數(shù)的分子、分母同時除以相同的數(shù),分數(shù)的大小不變。

  (5)引導學生概括出分數(shù)的基本性質,并與前面的猜想相回應。

  (6)提問:這里的“相同的數(shù)“,是不是任何數(shù)都可以呢?(補充板書:零除外)

  2.分數(shù)的基本性質與商不變的性質的比較。

  在除法里有商不變的性質,在分數(shù)里有分數(shù)的基本性質。

  想一想:根據(jù)分數(shù)與除法的關系以及整數(shù)除法中商不變的性質,你能說明分數(shù)的基本性質嗎?

  3.學習把分數(shù)化成指定分母而大小不變的分數(shù)。

 。1)出示例2,幫助學生理解題意。

 。2)啟發(fā):要把和化成分母是12而大小不變的分數(shù),分子應該怎樣變化?變化的根據(jù)是什么?

  (3)讓學生在書上填空,請一名學生口答。

  4.練習。教材第108頁的做一做。

  四、課堂實踐。

  練習二十三的1、3題。

  五、課堂小結

  1.這節(jié)課我們學習了什么內容?

  2.什么是分數(shù)的基本性質?

  六、課堂作業(yè)

  練習二十三的第2題。

  七、思考練習

  練習二十三的第10題。

  教學反思:

  “分數(shù)的基本性質”是西師版小學數(shù)學五年級下冊的內容,它是約分,通分的依據(jù),對于以后學習比的基本性質也有很大的幫助,所以,分數(shù)的基本性質是本單元的教學重點課。這節(jié)課我大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的.思維空間,讓學生得到的不僅是數(shù)學基本知識,更重要的是數(shù)學學習的方法,從而激勵學生進一步地主動學習,產生我會學的成就感。目的是讓學生學會學習,學會思考,學會創(chuàng)造,進而培養(yǎng)學生用數(shù)學的思想方法,思考并解決在實際生活中所遇到的各種問題,這也是學生適應未來生活必須的基本素質。

  這節(jié)課是在學生已掌握了商不變的性質之后,并在已有應用經驗的基礎上進行的,我是這樣設計教學的:

  1、通過商不變的性質、除法與分數(shù)的關系的復習,幫助學生意識到商不變的變規(guī)律與新知識的聯(lián)系,為新知識的學習做好必要的準備。讓學生根據(jù)商不變的性質大膽猜想,分數(shù)的基本性質是什么?說出自己的想法。

  2、充分發(fā)揮學生主體作用,引導學生自主探究。讓學生通過折紙游戲,操作、觀察、比較,驗證自己的猜想。涂色部分可用不同的分數(shù)表示,從而培養(yǎng)學生的動手能力,以及觀察問題、解決問題的能力。

  3、運用知識,解決實際問題。為了把知識轉化為能力,練習的設計注意了典型性、多樣性、深刻性、靈活性。歸納總結出分數(shù)的基本性質后,先進行基本練習,深化對分數(shù)的基本性質認識。在學完整個新知以后,在進行綜合練習,鞏固提高。通過應用拓展,使學生加深對分數(shù)的基本性質的理解,并培養(yǎng)學生運用所學的知識解決實際問題的能力。

  4、0除外的環(huán)節(jié)設計。在學生歸納出分數(shù)的基不性質后,缺少0除外這個難點,我設計了判斷一個分數(shù)的分子和分母同時乘0,讓學生通過練習,馬上想到0不能做除數(shù),在分數(shù)中分母不能為0,引出:分子和分母同時乘或除以相同的數(shù),必須0除外,突破難點。

【分數(shù)的基本性質教學設計優(yōu)秀】相關文章:

《分數(shù)的基本性質》教學設計03-05

分數(shù)的基本性質教學設計10-26

《分數(shù)基本性質》教學設計03-02

分數(shù)的基本性質教學設計01-07

《分數(shù)的基本性質》教學設計范文03-13

分數(shù)的基本性質教學設計及反思05-27

分數(shù)的基本性質教學設計(通用6篇)07-03

《分數(shù)的基本性質》教學設計(通用10篇)03-05

分數(shù)的意義和基本性質教學設計通用05-03