- 相關(guān)推薦
不等式的基本性質(zhì)數(shù)學(xué)教案(通用10篇)
在教學(xué)工作者開展教學(xué)活動(dòng)前,通常會(huì)被要求編寫教案,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。教案要怎么寫呢?以下是小編精心整理的不等式的基本性質(zhì)數(shù)學(xué)教案,歡迎大家分享。
不等式的基本性質(zhì)數(shù)學(xué)教案 1
【教學(xué)目標(biāo)】
1.通過(guò)具體情境讓學(xué)生感受和體驗(yàn)現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,鼓勵(lì)學(xué)生用數(shù)學(xué)觀點(diǎn)進(jìn)行觀察、歸納、抽象,使學(xué)生感受數(shù)學(xué)、走進(jìn)數(shù)學(xué)、改變學(xué)生的數(shù)學(xué)學(xué)習(xí)態(tài)度。
2.建立不等觀念,并能用不等式或不等式組表示不等關(guān)系。
3.了解不等式或不等式組的實(shí)際背景。
4.能用不等式或不等式組解決簡(jiǎn)單的實(shí)際問題。
【重點(diǎn)難點(diǎn)】
重點(diǎn):
。.通過(guò)具體的問題情景,讓學(xué)生體會(huì)不等量關(guān)系存在的普遍性及研究的必要性。
2.用不等式或不等式組表示實(shí)際問題中的不等關(guān)系,并用不等式或不等式組研究含有簡(jiǎn)單的不等關(guān)系的問題。
3.理解不等式或不等式組對(duì)于刻畫不等關(guān)系的意義和價(jià)值。
難點(diǎn):
1.用不等式或不等式組準(zhǔn)確地表示不等關(guān)系。
2.用不等式或不等式組解決簡(jiǎn)單的含有不等關(guān)系的實(shí)際問題。
【方法手段】
1.采用探究法,按照閱讀、思考、交流、分析,抽象歸納出數(shù)學(xué)模型,從具體到抽象再?gòu)某橄蟮骄唧w的方法進(jìn)行啟發(fā)式教學(xué)。
2.教師提供問題、素材,并及時(shí)點(diǎn)撥,發(fā)揮老師的主導(dǎo)作用和學(xué)生的主體作用。
3.設(shè)計(jì)教典型的現(xiàn)實(shí)問題,激發(fā)學(xué)生的學(xué)習(xí)興趣和積極性。
【教學(xué)過(guò)程】
教學(xué)環(huán)節(jié)
教師活動(dòng)
學(xué)生活動(dòng)
設(shè)計(jì)意圖
導(dǎo)入新課
日常生活中,同學(xué)們發(fā)現(xiàn)了哪些數(shù)量關(guān)系。你能舉出一些例子嗎?
實(shí)例1.某天的天氣預(yù)報(bào)報(bào)道,最高氣溫35℃,最低氣溫29℃。
實(shí)例2.若一個(gè)數(shù)是非負(fù)數(shù),則這個(gè)數(shù)大于或等于零。
實(shí)例3.兩點(diǎn)之間線段最短。
實(shí)例4.三角形兩邊之和大于第三邊,兩邊之差小于第三邊。
引導(dǎo)學(xué)生想生活中的例子和學(xué)過(guò)的數(shù)學(xué)中的例子。在老師的引導(dǎo)下,學(xué)生肯定會(huì)迫不及待的能說(shuō)出很多個(gè)例子來(lái)。即活躍了課堂氣氛,又激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
推進(jìn)新課
同學(xué)們所舉的這些例子聯(lián)系了現(xiàn)實(shí)生活,又考慮到數(shù)學(xué)上常見的數(shù)量關(guān)系,非常好。而且大家已經(jīng)考慮到本節(jié)課的標(biāo)題《不等關(guān)系與不等式》,所舉的實(shí)例都是反映不等量的關(guān)系。
(下面利用電腦投影展示兩個(gè)實(shí)例)
實(shí)例5:限時(shí)40km/h的路標(biāo),指示司機(jī)在前方路段行使時(shí),應(yīng)使汽車的速度v不超過(guò)40km/h。
實(shí)例6:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.
同學(xué)們認(rèn)真觀看顯示屏幕上老師所舉的例子。
讓學(xué)生們邊看邊思考:生活中有許多的事情的描述可以采用不等的數(shù)量關(guān)系來(lái)描述
過(guò)程引導(dǎo)
能夠發(fā)現(xiàn)身邊的數(shù)學(xué)當(dāng)然很好,這說(shuō)明同學(xué)們已經(jīng)走進(jìn)了數(shù)學(xué)這門學(xué)科,但是我們還要能用數(shù)學(xué)的眼光、數(shù)學(xué)的觀點(diǎn)、進(jìn)行觀察、歸納、抽象,完成這些量與量的比較過(guò)程,那么我們用什么知識(shí)來(lái)表示這些不等關(guān)系呢?
什么是不等式呢?
用大屏幕展示一組不等式-7<-5;3+4>1+4;2x≤6;a+2≥0;3≠4.能用不等式及不等式組把這些不等關(guān)系表示出來(lái),也就是建立不等式數(shù)學(xué)模型的過(guò)程通過(guò)對(duì)不等式數(shù)學(xué)模型的研究,反過(guò)來(lái)作用于現(xiàn)實(shí)生活,這才是學(xué)習(xí)數(shù)學(xué)的最終目的。
思考并回答老師的問題:可以用不等式或不等式組來(lái)表示不等關(guān)系。
經(jīng)過(guò)老師的啟發(fā)和點(diǎn)撥,學(xué)生可以自己總結(jié)出:用不等號(hào)將兩個(gè)解析試連接起來(lái)所成的式子叫不等式。
目的是讓學(xué)生回憶不等式的一些基本形式,并說(shuō)明不等號(hào)≤,≥的含義,是或的關(guān)系;貞浟瞬坏仁降母拍,不等式組學(xué)生自然而然就清楚了。
此時(shí)學(xué)生已經(jīng)迫不及待地想說(shuō)出自己的觀點(diǎn)了。
合作探究
。ㄒ唬┫旅嫖覀儼焉鲜鰧(shí)例中的不等量的關(guān)系用不等式或不等式組一一的表示出來(lái),那應(yīng)該怎么表示呢?
這兩位同學(xué)的觀點(diǎn)是否正確?
老師要表?yè)P(yáng)學(xué)生:“很好!這樣思考問題很嚴(yán)密!睉(yīng)該用不等式組來(lái)表示此實(shí)際問題中的不等量關(guān)系,也可以用“且”的形式來(lái)表達(dá)。
。ǘ﹩栴}一:設(shè)點(diǎn)A與平面的距離為d,B為平面上的任意一點(diǎn)。
請(qǐng)同學(xué)們用不等式或不等式組來(lái)表示出此問題中的不等量的關(guān)系。
老師提示:借助于圖形,這個(gè)問題是不是可以解決?
。ㄏ旅孀寣W(xué)生板演,結(jié)合三角形草圖來(lái)表達(dá))
問題(二):某種雜志原以每本2.5元的價(jià)格銷售,可以售出8萬(wàn)本,據(jù)市場(chǎng)調(diào)查,若單價(jià)每提高0.1元,銷售量就可能相應(yīng)減少2000本。若把提價(jià)后雜志的定價(jià)設(shè)為x元,怎樣用不等式表示銷售的總收入仍不低于20萬(wàn)元呢?
是不是還有其他的思路?
為什么可以這樣設(shè)?
很好,請(qǐng)繼續(xù)講。
這位學(xué)生回答的很好,表述得很準(zhǔn)確。請(qǐng)同學(xué)們對(duì)兩種解法作比較。
問題(三):某鋼鐵廠要把長(zhǎng)度為4000mm的鋼管截成500mm和600mm兩種,按照生產(chǎn)的要求,600mm鋼管的數(shù)量不超過(guò)500mm鋼管的'3倍。怎樣寫出滿足上述所有不等式關(guān)系的不等式?
假設(shè)截得500mm的鋼管x根,截得600mm的鋼管y根。根據(jù)題意,應(yīng)當(dāng)有什么樣的不等量關(guān)系呢?
右邊的三個(gè)不等關(guān)系是“或”還是“且”的關(guān)系呢?
這位學(xué)生回答得很好,思維很嚴(yán)密,那么該用怎樣的不等式組來(lái)表示此問題中的不等關(guān)系呢?
通過(guò)上述三個(gè)問題的探究,同學(xué)們對(duì)如何用不等式或不等式組把實(shí)際問題中隱藏的不等量關(guān)系表示出來(lái),這一點(diǎn)掌握得很好。請(qǐng)同學(xué)們完成書本練習(xí)第74頁(yè)1,2。
課堂小結(jié):
1.學(xué)習(xí)數(shù)學(xué)可以幫助我們解決實(shí)際生活中的問題。
2.數(shù)學(xué)和我們的生活聯(lián)系非常密切。
3.本節(jié)課鞏固了二元一次不等式及二元一次不等式組,并且能用它來(lái)解決現(xiàn)實(shí)生活中存在的大量不等量關(guān)系的實(shí)際問題。還要注意思維要嚴(yán)密,規(guī)范,并且要注意數(shù)形結(jié)合等思想方法的綜合應(yīng)用。
布置作業(yè):
第75頁(yè)習(xí)題3.1 A組4,5。
29℃≤t≤35℃
x≥0
|AC|+|BC|>|AB|
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、
|AB|-|AC|<|BC|.交被減數(shù)與減數(shù)的位置也可以。
如果用表示速度,則v≤40km/h.
f≥2.5%或p≥2.3%
學(xué)生自己糾正了錯(cuò)誤:這種表達(dá)是錯(cuò)誤的,因?yàn)閮蓚(gè)不等量關(guān)系要同時(shí)滿足,所以應(yīng)該用不等式組來(lái)表示次實(shí)際問題中的不等量關(guān)系,即可以表示為也可表示為f≥2.5%且p≥2.3%.
過(guò)點(diǎn)A作AC⊥平面于點(diǎn)C,則d=|AC|≤|AB|
可設(shè)雜志的定價(jià)為x元,則銷售量就減少萬(wàn)本。銷售量變?yōu)?8-)萬(wàn)本,則總收入為(8-)x萬(wàn)元。即銷售的總收入為不低于20萬(wàn)元的不等式表示為(8-)x≥20.
解法二:可設(shè)雜志的單價(jià)提高了0.1n元,(n)
我只考慮單價(jià)的增量。
那么銷售量減少了0.2n萬(wàn)本,單價(jià)為(2.5+0.1n)元,則也可得銷售的總收入為不低于20萬(wàn)元的不等式,表示為(2.5+0.1n)(8-0.2n)≥20.
截得兩種鋼管的總長(zhǎng)度不能超過(guò)4000mm。
截得600mm鋼管的數(shù)量不能超過(guò)500mm鋼管的3倍。
截得兩種鋼管的數(shù)量都不能為負(fù)數(shù)。
它們是同時(shí)滿足條件,應(yīng)該是且的關(guān)系。由實(shí)際問題的意義,還應(yīng)有x,y要同時(shí)滿足上述三個(gè)不等關(guān)系,可以用下面的不等式組來(lái)表示:
如果學(xué)生沒有想到的話,老師可以在黑板上板演示意圖,啟發(fā)學(xué)生考慮三邊的大小關(guān)系。
此時(shí)啟發(fā)學(xué)生“或”字可以嗎?學(xué)生沒有了聲音,他們?cè)谒伎贾。到底行不行呢?有的回答“行”,有的回答“不行”?/p>
此時(shí)學(xué)生們?cè)谒伎,時(shí)間長(zhǎng)的話,老師要及時(shí)點(diǎn)撥。
讓學(xué)生知道,在解決問題時(shí)應(yīng)該貫穿數(shù)形結(jié)合的思想,以形助數(shù),下面有學(xué)生的聲音,有學(xué)生在討論,有的學(xué)生還有疑問。老師注意關(guān)注學(xué)生的思維狀況,并且及時(shí)的加以指導(dǎo)。
此時(shí)學(xué)生已經(jīng)真正進(jìn)入本節(jié)課的學(xué)習(xí)狀態(tài),老師再給出問題(三)使學(xué)生一直處于跟隨老師積極思考和解決問題的狀態(tài)。問題是教學(xué)研究的核心,以問題展示的形式來(lái)培養(yǎng)學(xué)生的問題意識(shí)與探究意識(shí)。
【教學(xué)反思】(【設(shè)計(jì)說(shuō)明】)
本節(jié)課內(nèi)容很多,都是不等式和不等式組的有關(guān)問題,還有很多是生活中的實(shí)例,學(xué)生學(xué)習(xí)起來(lái)很感興趣,課堂的氣氛也很好,大多數(shù)學(xué)生都能很積極地回答問題,使課堂的學(xué)習(xí)氣氛很濃,確實(shí)也做到了愉快教學(xué)。設(shè)計(jì)是按照老師引導(dǎo)式教學(xué),邊講授邊引導(dǎo),啟發(fā)學(xué)習(xí)思考問題及能自己解決問題,鍛煉學(xué)習(xí)能自主的學(xué)習(xí)能力。
【交流評(píng)析】
一是課堂容量適中,二是實(shí)例很好,接近生活,學(xué)生感興趣。三是學(xué)生回答問題積極踴躍,和老師配合很好。四是多媒體應(yīng)用的恰到好處,教學(xué)設(shè)備很完善,老師也能很熟練的應(yīng)用。
不等式的基本性質(zhì)數(shù)學(xué)教案 2
(一)教學(xué)目標(biāo)
1.知識(shí)與技能:使學(xué)生感受到在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,在學(xué)生了解了一些不等式(組)產(chǎn)生的實(shí)際背景的前提下,學(xué)習(xí)不等式的有關(guān)內(nèi)容。
2.過(guò)程與方法:以問題方式代替例題,學(xué)習(xí)如何利用不等式研究及表示不等式,利用不等式的有關(guān)基本性質(zhì)研究不等關(guān)系;
3.情態(tài)與價(jià)值:通過(guò)學(xué)生在學(xué)習(xí)過(guò)程中的感受、體驗(yàn)、認(rèn)識(shí)狀況及理解程度,注重問題情境、實(shí)際背景的的設(shè)置,通過(guò)學(xué)生對(duì)問題的探究思考,廣泛參與,改變學(xué)生學(xué)習(xí)方式,提高學(xué)習(xí)質(zhì)量。
。ǘ┙虒W(xué)重、難點(diǎn)
重點(diǎn):用不等式(組)表示實(shí)際問題中的不等關(guān)系,并用不等式(組)研究含有不等關(guān)系的問題,理解不等式(組)對(duì)于刻畫不等關(guān)系的意義和價(jià)值。
難點(diǎn):用不等式(組)正確表示出不等關(guān)系。
(三)教學(xué)設(shè)想
[創(chuàng)設(shè)問題情境]
問題1:設(shè)點(diǎn)A與平面的距離為d,B為平面上的任意一點(diǎn),則d≤。
問題2:某種雜志原以每本2.5元的價(jià)格銷售,可以售出8萬(wàn)本。根據(jù)市場(chǎng)調(diào)查,若單價(jià)每提高0.1元,銷售量就可能相應(yīng)減少2000本。若把提價(jià)后雜志的定價(jià)設(shè)為x元,怎樣用不等式表示銷售的總收入仍不低于20萬(wàn)元?
分析:若雜志的定價(jià)為x元,則銷售的總收入為萬(wàn)元。那么不等關(guān)系“銷售的總收入不低于20萬(wàn)元”可以表示為不等式≥20
問題3:某鋼鐵廠要把長(zhǎng)度為4000mm的鋼管截成500mm和600mm兩種,按照生產(chǎn)的要求,600mm鋼管的'數(shù)量不能超過(guò)500mm鋼管的3倍。怎樣寫出滿足上述所有不等關(guān)系的不等式呢?
分析:假設(shè)截得500mm的鋼管x根,截得600mm的鋼管y根..
根據(jù)題意,應(yīng)有如下的不等關(guān)系:
。1)解得兩種鋼管的總長(zhǎng)度不能超過(guò)4000mm;
。2)截得600mm鋼管的數(shù)量不能超過(guò)500mm鋼管數(shù)量的3倍;
。3)解得兩鐘鋼管的數(shù)量都不能為負(fù)。
由以上不等關(guān)系,可得不等式組:
[練習(xí)]第82頁(yè),第1、2題。
[知識(shí)拓展]
設(shè)問:等式性質(zhì)中:等式兩邊加(減)同一個(gè)數(shù)(或式子),結(jié)果仍相等。不等式是否也有類似的性質(zhì)呢?
從實(shí)數(shù)的基本性質(zhì)出發(fā),可以證明下列常用的不等式的基本性質(zhì):
。1)
。2)
(3)
。4)
證明:
例1講解(第82頁(yè))
[練習(xí)]第82頁(yè),第3題。
[思考]:利用以上基本性質(zhì),證明不等式的下列性質(zhì):
[小結(jié)]:1.現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系;
2.利用不等式的有關(guān)基本性質(zhì)研究不等關(guān)系;
[作業(yè)]:習(xí)題3.1(第83頁(yè)):(A組)4、5;(B組)2.
不等式的基本性質(zhì)數(shù)學(xué)教案 3
教材分析
本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和不等式性質(zhì),掌握了不等式性質(zhì)的基礎(chǔ)上展開的,作為重要的基本不等式之一,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ)。要進(jìn)一步了解不等式的性質(zhì)及運(yùn)用,研究最值問題,此時(shí)基本不等式是必不可缺的;静坏仁皆谥R(shí)體系中起了承上啟下的作用,同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,因此它也是對(duì)學(xué)生進(jìn)行情感價(jià)值觀教育的好素材,所以基本不等式應(yīng)重點(diǎn)研究。
教學(xué)中注意用新課程理念處理教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不僅要接受、記憶、模仿和練習(xí),而且要自主探索、動(dòng)手實(shí)踐、合作交流、閱讀自學(xué),師生互動(dòng),教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過(guò)程。通過(guò)本節(jié)學(xué)習(xí)體會(huì)數(shù)學(xué)來(lái)源于生活,提高學(xué)習(xí)數(shù)學(xué)的樂趣。
課程目標(biāo)分析
依據(jù)《新課程標(biāo)準(zhǔn)》對(duì)《不等式》學(xué)段的.目標(biāo)要求和學(xué)生的實(shí)際情況,特確定如下目標(biāo):
1、知識(shí)與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡(jiǎn)單的求最值問題;理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;培養(yǎng)學(xué)生探究能力以及分析問題解決問題的能力。
2、過(guò)程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問題→剖析歸納證明→幾何解釋→應(yīng)用(最值的求法、實(shí)際問題的解決)的過(guò)程呈現(xiàn)。啟動(dòng)觀察、分析、歸納、總結(jié)、抽象概括等思維活動(dòng),培養(yǎng)學(xué)生的思維能力,體會(huì)數(shù)學(xué)概念的學(xué)習(xí)方法,通過(guò)運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動(dòng)探索基本不等式性質(zhì),體會(huì)學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗(yàn)成功的樂趣。
3、情感與態(tài)度目標(biāo):通過(guò)問題情境的設(shè)置,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來(lái),培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過(guò)數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。
教學(xué)重、難點(diǎn)分析
重點(diǎn):應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索基本不等式的證明過(guò)程及應(yīng)用。
難點(diǎn):
1、基本不等式成立時(shí)的三個(gè)限制條件(簡(jiǎn)稱一正、二定、三相等);
2、利用基本不等式求解實(shí)際問題中的最大值和最小值。
教法分析
本節(jié)課采用觀察——感知——抽象——?dú)w納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線,從實(shí)際問題出發(fā),放手讓學(xué)生探究思索。以現(xiàn)代信息技術(shù)多媒體課件作為教學(xué)輔助手段,加深學(xué)生對(duì)基本不等式的理解。
教學(xué)準(zhǔn)備
多媒體課件、板書
教學(xué)過(guò)程
教學(xué)過(guò)程設(shè)計(jì)以問題為中心,以探究解決問題的方法為主線展開。這種安排強(qiáng)調(diào)過(guò)程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過(guò)程成為學(xué)生對(duì)知識(shí)的再創(chuàng)造、再發(fā)現(xiàn)的過(guò)程,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。
具體過(guò)程安排如下:
創(chuàng)設(shè)情景,提出問題;
設(shè)計(jì)意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,現(xiàn)實(shí)情境問題是數(shù)學(xué)教學(xué)的平臺(tái),數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實(shí),并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實(shí)基于此,設(shè)置如下情境:
上圖是在北京召開的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車,代表中國(guó)人民熱情好客。
[問]你能在這個(gè)圖中找出一些相等關(guān)系或不等關(guān)系嗎?
本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識(shí)基本不等式。
二、抽象歸納:
一般地,對(duì)于任意實(shí)數(shù)a,b,有,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。
[問]你能給出它的證明嗎?
學(xué)生在黑板上板書。
特別地,當(dāng)a>0,b>0時(shí),在不等式中,以、分別代替a、b,得到什么?
設(shè)計(jì)依據(jù):類比是學(xué)習(xí)數(shù)學(xué)的一種重要方法,此環(huán)節(jié)不僅讓學(xué)生理解了基本不等式不等式的來(lái)源,突破了重點(diǎn)和難點(diǎn),而且感受了其中的函數(shù)思想,為今后學(xué)習(xí)奠定基礎(chǔ).
答案:。
【歸納總結(jié)】
如果a,b都是正數(shù),那么,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。
我們稱此不等式為基本不等式。其中稱為a,b的算術(shù)平均數(shù),稱為a,b的幾何平均數(shù)。
三、理解升華:
1、文字語(yǔ)言敘述:
兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
2、聯(lián)想數(shù)列的知識(shí)理解基本不等式
已知a,b是正數(shù),A是a,b的等差中項(xiàng),G是a,b的正的等比中項(xiàng),A與G有無(wú)確定的大小關(guān)系?
兩個(gè)正數(shù)的等差中項(xiàng)不小于它們正的等比中項(xiàng)。
3、符號(hào)語(yǔ)言敘述:
若,則有,當(dāng)且僅當(dāng)a=b時(shí)。
[問]怎樣理解“當(dāng)且僅當(dāng)”?(學(xué)生小組討論,交流看法,師生總結(jié))
“當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立”的含義是:
不等式的基本性質(zhì)數(shù)學(xué)教案 4
教學(xué)目標(biāo)
1、能夠根據(jù)實(shí)際問題中的數(shù)量關(guān)系,列一元一次不等式(組)解決實(shí)際問題.
2、通過(guò)例題教學(xué),學(xué)生能夠?qū)W會(huì)從數(shù)學(xué)的角度認(rèn)識(shí)問題,理解問題,提出問題, 學(xué)會(huì)從實(shí)際問題中抽象出數(shù)學(xué)模型.
3、能夠認(rèn)識(shí)數(shù)學(xué)與人類生活的密切聯(lián)系,培養(yǎng)學(xué)生應(yīng)用所學(xué)數(shù)學(xué)知識(shí)解決實(shí)際問題的意識(shí).
教學(xué)重點(diǎn):
能夠根據(jù)實(shí)際問題中的.數(shù)量關(guān)系,列出一元一次不等式(組)解決 實(shí)際問題
教學(xué)難點(diǎn):
審題,根據(jù)實(shí)際問題列出不等式.
例題: 甲、乙兩商場(chǎng)以同樣的價(jià)格出售同樣的商品,并且又各自推出不同的優(yōu)惠方案:在甲商場(chǎng)累計(jì)購(gòu)物超過(guò)100元后,超出100元的部分按90%收費(fèi);在乙商場(chǎng)累計(jì)購(gòu)物超過(guò)50元后,超出50元的部分按95%收費(fèi)。顧客到哪家商場(chǎng)購(gòu)物花費(fèi)少
解:設(shè)累計(jì)購(gòu)物x元,根據(jù)題意得
(1)當(dāng)0 < x≤50時(shí),到甲、乙兩商場(chǎng)購(gòu)物花費(fèi)一樣;
。2)當(dāng)50< x≤100時(shí),到乙商場(chǎng)購(gòu)物花費(fèi)少;
。3)當(dāng)x > 100時(shí),到甲商場(chǎng)的花費(fèi)為100+0.9(x-100) , 到乙商場(chǎng)的花費(fèi)為50+0.95(x-50)則
50+0.95(x-50) > 100+0.9(x-100),解之得x >150
50+0.95(x-50) < 100+0.9(x-100),解之得x < 150
50+0.95(x-50) = 100+0.9(x-100), 解之得x = 150
答:當(dāng)0 < x≤50時(shí),到甲、乙兩商場(chǎng)購(gòu)物花費(fèi)一樣;
當(dāng)50< x≤100時(shí),到乙商場(chǎng)購(gòu)物花費(fèi)少;當(dāng)x>150時(shí),到甲商場(chǎng)購(gòu)物花費(fèi)少;當(dāng)100 < x <150時(shí),到乙商場(chǎng)購(gòu)物花費(fèi)少;當(dāng)x=150時(shí),到甲、乙兩商場(chǎng)購(gòu)物花費(fèi)一樣。
變式練習(xí),學(xué)校為解決部分學(xué)生的午餐問題,聯(lián)系了兩家快餐公司,兩家公司的報(bào)價(jià)、質(zhì)量和服務(wù)承諾都相同,且都表示對(duì)學(xué)生優(yōu)惠:甲公司表示每份按報(bào)價(jià)的90%收費(fèi),乙公司表示購(gòu)買100份以上的部分按報(bào)價(jià)的80%收費(fèi)。問:選擇哪家公司較好?
解:設(shè)購(gòu)買午餐x份,每份報(bào)價(jià)為“1”,根據(jù)題意得
0.9x > 100+0.8(x-100),解之得x >200
0.9x < 100+0.8(x-100),解之得x < 200
0.9x = 100+0.8(x-100),解之得x = 200
答:當(dāng)x>200時(shí),選乙公司較好;當(dāng)0 < x <200時(shí),選甲公司較好;當(dāng)x=200時(shí),兩公司實(shí)際收費(fèi)相同。
作業(yè)
1、某商店5月1號(hào)舉行促銷優(yōu)惠活動(dòng),當(dāng)天到該商店購(gòu)買商品有兩種方案,方案一:用168元購(gòu)買會(huì)員卡成為會(huì)員后,憑會(huì)員卡購(gòu)買商店內(nèi)任何商品,一律按商品價(jià)格的8折優(yōu)惠;方案二:若不購(gòu)買會(huì)員卡,則購(gòu)買商店內(nèi)任何商品,一律按商品價(jià)格的9.5折優(yōu)惠。已知小敏5月1日前不是該商店的會(huì)員。請(qǐng)幫小敏算一算,采用哪種方案更合算?
2、某單位計(jì)劃10月份組織員工到杭州旅游,人數(shù)估計(jì)在10~25之間。甲乙兩旅行社的服務(wù)質(zhì)量相同,且組織到杭州旅游的價(jià)格都是每人200元。該單位聯(lián)系時(shí),甲旅行社表示可以給予每位旅客七五折優(yōu)惠;乙旅行社表示可先免去一帶隊(duì)領(lǐng)導(dǎo)的旅游費(fèi)用,其余游客八折優(yōu)惠。問該單位怎樣選擇,可使其支付的旅游總費(fèi)用較少?
不等式的基本性質(zhì)數(shù)學(xué)教案 5
教學(xué)目標(biāo):
通過(guò)對(duì)具體實(shí)例的學(xué)習(xí),使學(xué)生能夠了解生活中的不等量關(guān)系,理解不等式的概念,知道什么是不等式的解,為以后學(xué)習(xí)不等式的解法奠定基礎(chǔ)。
知識(shí)與能力:
1.通過(guò)對(duì)具體事例的分析和探索,得到生活中不等量的關(guān)系。
2.通過(guò)理解得到不等式的概念,從而使學(xué)生經(jīng)歷實(shí)際問題中數(shù)量的分析、抽象過(guò)程,體會(huì)現(xiàn)實(shí)中有各種各樣錯(cuò)綜復(fù)雜的數(shù)量關(guān)系。
3.了解不等式的意義,知道不等式是用來(lái)刻畫生活中的數(shù)量關(guān)系的。
4.知道什么是不等式的解。
過(guò)程與方法:
1.引導(dǎo)學(xué)生分析具體事例,從對(duì)具體事例的分析中得到不等量關(guān)系。
2.引導(dǎo)并幫助學(xué)生列出不等式,分析不等式的成立條件。
3.通過(guò)分析、抽象得到不等式的概念和不等式的解的概念。
4.通過(guò)習(xí)題鞏固和加深對(duì)概念的理解。
情感、態(tài)度與價(jià)值觀:
1.通過(guò)學(xué)生的分析和抽象過(guò)程使他們體會(huì)現(xiàn)實(shí)中錯(cuò)綜復(fù)雜的數(shù)量關(guān)系,從而培養(yǎng)其抽象思維能力。
2.通過(guò)分組討論學(xué)習(xí),體會(huì)在解決具體問題的過(guò)程中與他人合作的重要性,培養(yǎng)學(xué)生的團(tuán)體協(xié)作精神,使學(xué)生獲得合作交流的學(xué)習(xí)方式。
3.通過(guò)聯(lián)系與發(fā)展、對(duì)立與統(tǒng)一的思考方法對(duì)學(xué)生進(jìn)行辯證唯物主義教育。
4.通過(guò)創(chuàng)設(shè)問題串,讓學(xué)生仔細(xì)觀察、對(duì)比、歸納、整理,嘗試對(duì)有理數(shù)進(jìn)行分類,體驗(yàn)教學(xué)活動(dòng)充滿著探索性和創(chuàng)造性。
教學(xué)重、難點(diǎn)及教學(xué)突破
重點(diǎn): 不等式的概念和不等式的解的概念。
難點(diǎn): 對(duì)文字表述的數(shù)量關(guān)系能列出不等式。
教學(xué)突破: 由于學(xué)生在以前已經(jīng)對(duì)數(shù)量的大小關(guān)系和含數(shù)字的不等式有所了解,但還沒有接觸過(guò)含未知數(shù)的不等式,在學(xué)生分析問題的時(shí)候注意引入現(xiàn)實(shí)中大量存在的數(shù)量間的不等關(guān)系,研究它們的變化規(guī)律,使學(xué)生知道用不等式解決實(shí)際問題的方便之處。在本節(jié)的教學(xué)中能夠在組織學(xué)生討論的過(guò)程中適當(dāng)?shù)貪B透變量的知識(shí),讓學(xué)生感受其中的函數(shù)思想,并引導(dǎo)學(xué)生發(fā)現(xiàn)不等式的解與方程的解之間的區(qū)別。在處理本節(jié)難點(diǎn)時(shí)指導(dǎo)學(xué)生練習(xí)有理數(shù)和代數(shù)式的知識(shí),準(zhǔn)確譯出不等式。
教學(xué)過(guò)程:
一、研究問題:
世紀(jì)公園的票價(jià)是:每人5元,一次購(gòu)票滿30張可少收1元。xx班有27名少先隊(duì)員去世公園進(jìn)行活動(dòng)。當(dāng)領(lǐng)隊(duì)王小華準(zhǔn)備好了零錢到售票處買了27張票時(shí),愛動(dòng)腦的李敏同紀(jì)學(xué)喊住了王小華,提議買30張票。但有的同學(xué)不明白。明明只有27個(gè)人,買30張票,豈不浪費(fèi)嗎?
那么,究竟李敏的提議對(duì)不對(duì)呢?是不是真的浪費(fèi)呢
二、新課探究:
分析上面的問題:設(shè)有x人要進(jìn)世紀(jì)公園,①若x30,應(yīng)該如何買票? ②若x30, 則又該如何買票呢?
結(jié)論:至少要有多少人進(jìn)公園時(shí),買30張票才合算?
概括:
1、不等式的定義:表示不等關(guān)系的.式子,叫做不等式.不等式用符號(hào),.
2、不等式的解:能使不等式成立的未知數(shù)的值,叫做不等式的解.
3、不等式的分類:⑴恒不等式:-7-5,3+41+4,a+2a+1.
、茥l件不等式:x+36,a+23,y-3-5.
三、基礎(chǔ)訓(xùn)練.
例1、用不等式表示: ⑴ a是正數(shù);⑵ b不 是負(fù)數(shù);⑶ c是非負(fù)數(shù); ⑷ x 的平方是非負(fù)數(shù);⑸ x的一半小于-1;⑹ y與4的和不小于3。
注:⑴不等式表示代數(shù)式之間的不相等關(guān)系,與方程表示相等關(guān)系相對(duì)應(yīng);
、蒲芯坎坏汝P(guān)系列不等式的重點(diǎn)是抓關(guān)鍵詞,弄清不等關(guān)系.
例2、用不等式表示: ⑴ a與1的和是正數(shù);⑵ x的2倍與y的3倍的差是非負(fù)數(shù);⑶ x的2倍與1的和大于⑷a的一半與4的差的絕對(duì)值不小于a.
例3、當(dāng)x=2時(shí),不等式x-12成立嗎?當(dāng)x=3呢?當(dāng)x=4呢?
注:⑴檢驗(yàn)字母的值能否使不等式成立,只要代入不等式的左右兩邊,如果符合不等號(hào)所表示的關(guān)系,就成立,否則就不成立. ⑵代入法是檢驗(yàn)不等式的解的重要方法.
學(xué)生練習(xí):課本P42練習(xí)1、2、3.
四、能力拓展
學(xué)校組織學(xué)生觀看電影,某電影院票價(jià)每張12元,50人以上(含50人)的團(tuán)體票可享受8折優(yōu)惠,現(xiàn)有45名學(xué)生一起到電影院看電影,為享受8折優(yōu)惠,必須按50人購(gòu)團(tuán)體票.
、耪(qǐng)問他們購(gòu)買團(tuán)體票是否比不打折而按45人購(gòu)票便宜;
、迫魧W(xué)生到該電影院人數(shù)不足50人,應(yīng)至少有多少人買團(tuán)體票比不打折而按實(shí)際人數(shù)購(gòu)票便宜.
解:⑴按實(shí)際45人購(gòu)票需付錢_________ 元,如果按50人購(gòu)買團(tuán)體票則需付錢501280%=480元,所以購(gòu)買團(tuán)體票便宜.
、圃O(shè)有x人到電影院觀看電影,當(dāng)____時(shí),按實(shí)際人數(shù)買票______張,需付款_______元,而按團(tuán)體票購(gòu)票需付款________元,如果買團(tuán)體票合算,那么應(yīng)有不等式________________,
由①得,當(dāng)x=45時(shí),上式成立,讓我們?cè)偃∫恍⿺?shù)據(jù)試一試,將結(jié)果填入下表:
x 12x 比較480與12x的大小 4812x成立嗎?
30
40
41
42
由上表可見,至少要__________人時(shí)進(jìn)電影院,購(gòu)團(tuán)體票才合算.
五、小結(jié):⑴不等式的定義,不等式的解.
、茖(duì)實(shí)際問題中探索得到的不等式的解,不僅要滿足數(shù)學(xué)式子,而且要注意實(shí)際意義.
六、作業(yè):
課本P42習(xí)題8.1第1、2、3題.
補(bǔ)充題:
1.用不等式表示:
(1) 與1的和是正數(shù);
(2) 的 與 的 的差是非負(fù)數(shù);
(3) 的2倍與1的和大于3;
(4) 的一半與4的差的絕對(duì)值不小于
(5) 的2倍減去1不小于 與3的和;
(6) 與 的平方和是非負(fù)數(shù);
(7) 的2倍加上3的和大于-2且小于4;
(8) 減去5的差的絕對(duì)值不大于
2.小李和小張決定把省下的零用錢存起來(lái)。這個(gè)月小李存了168元,小張存了85元。下個(gè)月開始小李每月存16元,小張每月存25元.問幾個(gè)月后小張的存款數(shù)能超過(guò)小李?(試根據(jù)題意列出不等式,并參照教科書中問題1的探索,找出所列不等式的解)
3.某公司在甲、乙兩座倉(cāng)庫(kù)分別有農(nóng)用車12輛和6輛,現(xiàn)需要調(diào)往A縣10輛,調(diào)往B縣8輛,已知從甲倉(cāng)庫(kù)調(diào)運(yùn)一輛農(nóng)用車到A縣和B縣的運(yùn)費(fèi)分別為40元和80元,從乙倉(cāng)庫(kù)調(diào)運(yùn)一輛農(nóng)用車到A縣和B縣的運(yùn)費(fèi)分別為30元和50元,(1)設(shè)從乙倉(cāng)庫(kù)調(diào)往A縣農(nóng)用車 輛,用含 的代數(shù)式表示總運(yùn)費(fèi)W元;(2)請(qǐng)你用嘗試的方法,探求總運(yùn)費(fèi)不超過(guò)900元,共有幾種調(diào)運(yùn)方案?你能否求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案.
不等式的基本性質(zhì)數(shù)學(xué)教案 6
教學(xué)內(nèi)容
在本節(jié)我們通過(guò)生活中一個(gè)賣票的具體實(shí)例,分析不等量關(guān)系,得到不等式的概念,并初步引入了不等式的思想。
教學(xué)目標(biāo)
通過(guò)對(duì)具體實(shí)例的學(xué)習(xí),使學(xué)生能夠了解生活中的不等量關(guān)系,理解不等式的概念,知道什么是不等式的解,為以后學(xué)習(xí)不等式的解法奠定基礎(chǔ)。
知識(shí)與能力
1.通過(guò)對(duì)具體事例的分析和探索,得到生活中不等量的關(guān)系。
2.通過(guò)理解得到不等式的概念,從而使學(xué)生經(jīng)歷實(shí)際問題中數(shù)量的分析、抽象過(guò)程,體會(huì)現(xiàn)實(shí)中有各種各樣錯(cuò)綜復(fù)雜的數(shù)量關(guān)系。
3.了解不等式的意義,知道不等式是用來(lái)刻畫生活中的數(shù)量關(guān)系的。
4.知道什么是不等式的解。
過(guò)程與方法
1.引導(dǎo)學(xué)生分析具體事例,從對(duì)具體事例的分析中得到不等量關(guān)系。
2.引導(dǎo)并幫助學(xué)生列出不等式,分析不等式的成立條件。
3.通過(guò)分析、抽象得到不等式的概念和不等式的解的概念。
4.通過(guò)習(xí)題鞏固和加深對(duì)概念的理解。
情感、態(tài)度與價(jià)值觀
1.通過(guò)學(xué)生的分析和抽象過(guò)程使他們體會(huì)現(xiàn)實(shí)中錯(cuò)綜復(fù)雜的數(shù)量關(guān)系,從而培養(yǎng)其抽象思維能力。
2.通過(guò)分組討論學(xué)習(xí),體會(huì)在解決具體問題的過(guò)程中與他人合作的重要性,培養(yǎng)學(xué)生的團(tuán)體協(xié)作精神,使學(xué)生獲得合作交流的學(xué)習(xí)方式。
3.通過(guò)聯(lián)系與發(fā)展、對(duì)立與統(tǒng)一的思考方法對(duì)學(xué)生進(jìn)行辯證唯物主義教育。
4.通過(guò)創(chuàng)設(shè)問題串,讓學(xué)生仔細(xì)觀察、對(duì)比、歸納、整理,嘗試對(duì)有理數(shù)進(jìn)行分類,體驗(yàn)教學(xué)活動(dòng)充滿著探索性和創(chuàng)造性。
教學(xué)重、難點(diǎn)及教學(xué)突破
重點(diǎn)
不等式的概念和不等式的解的概念。
難點(diǎn)
對(duì)文字表述的數(shù)量關(guān)系能列出不等式。
教學(xué)突破
由于學(xué)生在以前已經(jīng)對(duì)數(shù)量的大小關(guān)系和含數(shù)字的不等式有所了解,但還沒有接觸過(guò)含未知數(shù)的不等式,建議教師在學(xué)生分析問題的時(shí)候注意引入現(xiàn)實(shí)中大量存在的數(shù)量間的不等關(guān)系,研究它們的變化規(guī)律,使學(xué)生知道用不等式解決實(shí)際問題的方便之處。
建議教師在本節(jié)的教學(xué)中能夠在組織學(xué)生討論的過(guò)程中適當(dāng)?shù)貪B透變量的知識(shí),讓學(xué)生感受其中的函數(shù)思想,并引導(dǎo)學(xué)生發(fā)現(xiàn)不等式的解與方程的解之間的區(qū)別。
在處理本節(jié)難點(diǎn)時(shí)教師可指導(dǎo)學(xué)生練習(xí)有理數(shù)和代數(shù)式的`知識(shí),準(zhǔn)確“譯出”不等式。
教學(xué)準(zhǔn)備
教師準(zhǔn)備
1.準(zhǔn)備有關(guān)不等式的解與方程的解的不同點(diǎn)的對(duì)照關(guān)系。
2.準(zhǔn)備適當(dāng)?shù)木毩?xí)。
學(xué)生準(zhǔn)備
1.課前復(fù)習(xí)有關(guān)有理數(shù)的知識(shí)和代數(shù)式的知識(shí),為學(xué)習(xí)作好準(zhǔn)備。
2.復(fù)習(xí)有關(guān)方程的內(nèi)容。
教學(xué)步驟
1.引導(dǎo)學(xué)生完成對(duì)具體實(shí)例的分析,使其知道在現(xiàn)實(shí)中存在的數(shù)量的關(guān)系不是只有等量的關(guān)系,從而進(jìn)入對(duì)不等式的學(xué)習(xí)。
2.鼓勵(lì)學(xué)生探索實(shí)際問題,從中發(fā)現(xiàn)有關(guān)不等量的問題的解不是唯一的,從而對(duì)不等式有了解,并在此過(guò)程中滲透變量的知識(shí)。
3.引出不等式的概念和不等式的解的概念,教會(huì)學(xué)生由文字?jǐn)⑹鲛D(zhuǎn)化成不等式的表述的方法。
一、導(dǎo)入新課
創(chuàng)設(shè)情景:我們?cè)谏钪薪?jīng)常會(huì)遇到買東西或者購(gòu)門票時(shí)量大優(yōu)惠的事情。下面我們大家一起來(lái)討論一下這樣的問題?纯茨茉鯓咏鉀Q這個(gè)看似“浪費(fèi)”的問題?
學(xué)生進(jìn)行討論,并通過(guò)計(jì)算兩種買票方法所用的錢數(shù)的比較來(lái)判斷哪種方法好,從而得到買30張票是節(jié)省的,從而進(jìn)入學(xué)習(xí)情景。
肯定學(xué)生的發(fā)言,并引入:這種數(shù)量間不相等的關(guān)系我們用一種特殊的式子來(lái)表示,這類式子叫不等式。再進(jìn)一步提出問題:
二、對(duì)不等式概念的探索
典型例題
本課總結(jié)
本節(jié)課借助生活的實(shí)例引入不等量的關(guān)系,進(jìn)而使學(xué)生學(xué)習(xí)了用不等式表示這些等量關(guān)系,接著引入了不等式的相關(guān)概念,并鼓勵(lì)學(xué)生分組討論,對(duì)用不等式表達(dá)數(shù)量之間的關(guān)系有初步的認(rèn)識(shí)。
板書設(shè)計(jì)
13.1認(rèn)識(shí)不等式
一、問題導(dǎo)入
解決問題:5 × 27=135,但4 × 30=120,120<135,所以不浪費(fèi)
二、問題探索
120<5 x 當(dāng)什么時(shí)候不等式成立
三、不等式的概念
問題探究與拓展活動(dòng)
啟發(fā)學(xué)生理解變量的概念,初步了解函數(shù)思想。
教學(xué)探討與反思
本課教學(xué)之后,教師可引導(dǎo)學(xué)生探索不等式與方程之間的聯(lián)系與區(qū)別。
不等式的基本性質(zhì)數(shù)學(xué)教案 7
教學(xué)目的:
1、進(jìn)一步掌握均值不等式定理;
2、會(huì)應(yīng)用此定理求某些函數(shù)的最值;
3、能夠解決一些簡(jiǎn)單的實(shí)際問題、
教學(xué)重點(diǎn):
均值不等式定理的應(yīng)用
教學(xué)難點(diǎn):
解題中的轉(zhuǎn)化技巧
教學(xué)過(guò)程:
一、復(fù)習(xí)引入:
1、重要不等式:
。1)如果
。2)如果a,b都是正數(shù),那么
當(dāng)且當(dāng)a=b時(shí)等號(hào)成立、
2、上課時(shí)中“例1”的條件、結(jié)論及注意事項(xiàng)、
二、講解新課:
定理:如果,那么(當(dāng)且僅當(dāng)a=b=c時(shí)取“=”)
推論:如果,那么(當(dāng)且僅當(dāng)a=b=c時(shí)取“=”)
三、例題
例1已知a,b,c,d都是正數(shù),求證:
例2求下列函數(shù)的最小值,并求相應(yīng)的x值、
例3某工廠要建造一個(gè)長(zhǎng)方體無(wú)蓋貯水池,其容積為4800m3,深為3m,如果池底每1m2的造價(jià)為150元,池壁每1m2的造價(jià)為120元,問怎樣設(shè)計(jì)水池能使總造價(jià)最低,最低總造價(jià)是多少元?
四、課堂練習(xí):
1、已知x≠0,當(dāng)x取什么值時(shí),x2+的值最小?最小值是多少?
2、一段長(zhǎng)為Lm的籬笆圍成一個(gè)一邊靠墻的`矩形菜園,問這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),菜園的面積最大,最大面積是多少?
五、作業(yè):習(xí)題6、2 6、 7;
補(bǔ)充:
。1)求函數(shù)y=2x2+(x>0)的最小值、
。2)求函數(shù)y=x2+(x>0)的最小值、
。3)求函數(shù)y=3x2-2x3(0<x<)的最大值、
。4)求函數(shù)y=x(1-x2)(0<x<1)的最大值、
。5)設(shè)a>0,b>0,且a2+=1,求a的最大值、
不等式的基本性質(zhì)數(shù)學(xué)教案 8
教學(xué)目標(biāo)
1.掌握分式不等式向整式不等式的轉(zhuǎn)化;
2.進(jìn)一步熟悉并掌握數(shù)軸標(biāo)根法;
3.掌握分式不等式基本解法。
教學(xué)重點(diǎn)難點(diǎn)
重點(diǎn)是分式不等式解法
難點(diǎn)是分式不等式向整式不等式的轉(zhuǎn)化
教學(xué)方法
啟發(fā)式和引導(dǎo)式
教具準(zhǔn)備
三角板、幻燈片
教學(xué)過(guò)程
1.復(fù)習(xí)回顧:
前面,我們學(xué)習(xí)了含有絕對(duì)值的不等式的基本解法,還了解了數(shù)軸標(biāo)根法的解題思路,本節(jié)課,我們將繼續(xù)研究分式不等式的解法。
2.講授新課:
例3解不等式<0.
分析:這是一個(gè)分式不等式,其左邊是兩個(gè)關(guān)于x的二次三項(xiàng)式的商,根據(jù)商的符號(hào)法則,它可以化成兩個(gè)不等式組:
因此,原不等式的解集就是上面兩個(gè)不等式組的解集的并集,此種解法從課本可以看到。
另解:根據(jù)積的.符號(hào)法則,可以將原不等式等價(jià)變形為(x2-3x+2)(x2-2x-3)<0
即(x+1)(x-1)(x-2)(x-3)<0
令(x+1)(x-1)(x-2)(x-3)=0
可得零點(diǎn)x=-1或1,或2或3,將數(shù)軸分成五部分。
由數(shù)軸標(biāo)根法可得所求不等式解集為:
{x|-1<x<1或2<x<3}
說(shuō)明:(1)讓學(xué)生注意數(shù)軸標(biāo)根法適用條件;
。2)讓學(xué)生思考≤0的等價(jià)變形。
例4解不等式>1
分析:首先轉(zhuǎn)化成右端為0的分式不等式,然后再等價(jià)變形為整式不等式求解。
解:原不等式等價(jià)變形為:
-1>0
通分整理得:>0
等價(jià)變形為:(x2-2x+3)(x2-3x+2)>0
即:(x+1)(x-1)(x-2)(x-3)>0
由數(shù)軸標(biāo)根法可得所求不等式解集為:
{x|x<-1或1<x<2或x>3}
說(shuō)明:此題要求學(xué)生掌握較為一般的分式不等式的轉(zhuǎn)化與求解。
3.課堂練習(xí):
課本P19練習(xí)1.
補(bǔ)充:(1)≥0;
。2)x(x-3)(x+1)(x-2)≤0.
課堂小結(jié)
通過(guò)本節(jié)學(xué)習(xí),要求大家在進(jìn)一步掌握數(shù)軸標(biāo)根法的基礎(chǔ)上,掌握分式不等式的基本解法,即轉(zhuǎn)化為整式不等式求解。
課后作業(yè)
習(xí)題6.4 3,4.
不等式的基本性質(zhì)數(shù)學(xué)教案 9
〖教學(xué)目標(biāo)〗
在本學(xué)段,學(xué)生將經(jīng)歷從實(shí)際問題中建立不等關(guān)系,進(jìn)而抽象出不等式的過(guò)程,體會(huì)不等式和方程一樣,都是刻畫現(xiàn)實(shí)世界中同類量之間關(guān)系的重要數(shù)學(xué)模型,同時(shí)進(jìn)一步發(fā)展學(xué)生的符號(hào)感.
(一)知識(shí)目標(biāo)
1.能夠根據(jù)具體問題中的大小關(guān)系了解不等式的意義.
2.理解什么是不等式成立,掌握不等式是否成立的判定方法.
3.能依題意準(zhǔn)確迅速地列出相應(yīng)的不等式.體會(huì)現(xiàn)實(shí)生活中存在著大量的不等關(guān)系,學(xué)習(xí)不等式的有關(guān)知識(shí)是生活和工作的需要.
(二)能力目 標(biāo)
1.培養(yǎng)學(xué)生運(yùn)用類比方法研究相關(guān)內(nèi)容的能力.
2.訓(xùn)練學(xué)生運(yùn)用所學(xué)知識(shí)解決實(shí)際問題的能力.
(三)情感目標(biāo)
1.通過(guò)引導(dǎo)學(xué)生分析問題、解決問題,培養(yǎng)他們積極的參與意識(shí),競(jìng)爭(zhēng)意識(shí).
2.通過(guò) 不等式的學(xué)習(xí),滲透具有不等量關(guān)系的數(shù)學(xué)美.
〖教學(xué)重點(diǎn)〗
能依題意準(zhǔn)確迅速地列出相應(yīng)的不等式.
〖教學(xué)難點(diǎn)〗
理解符號(hào)“≥”“ ≤”的含義,理解什么是不等式成立.
〖教學(xué)過(guò)程〗
一、課前布置
1.瀏覽課本P2~21,了解本章結(jié)構(gòu)。]
自學(xué):閱讀課本P2~P4,試著做一做本節(jié)練習(xí),提出在自學(xué)中發(fā)現(xiàn)的問題(鼓勵(lì)提問).
2.查找“不等號(hào)的由來(lái)”
備注: 不等號(hào)的由來(lái)|K]
、佻F(xiàn)實(shí)世界中存在著大量的不等 關(guān)系,如何用符號(hào)表示呢? 為了尋求一套表示“大于”或“小于”的符號(hào),數(shù)學(xué)家們絞盡腦汁.1631年,英國(guó)數(shù)學(xué)家哈里奧特首先創(chuàng)用符號(hào)“>”表示“大于”,“<”表示“小于”,這就是現(xiàn)在通用的大于號(hào)和小于號(hào).與哈里奧特同時(shí)代的數(shù)學(xué)家們也創(chuàng)造了一些表示大 小關(guān)系的符號(hào),但都因書寫起來(lái)十分繁瑣而被淘汰.
、诤髞(lái),人們?cè)诒磉_(dá)不等關(guān)系時(shí),常把等式作為不等式的特殊情況來(lái)處理.在許多情況下,要用到一個(gè)數(shù)(或量)大于或等于另 一個(gè)數(shù)(或量),此時(shí)就把“>”和“=”有機(jī)地結(jié)合起來(lái)得到符號(hào)“≥”,讀做“大于或等于”,有時(shí)也稱為“不小于”.同樣,把符號(hào)“≤”讀做“小于或等于”,有時(shí)也稱為“不大于”.
那么如何理解符號(hào)“≥”“≤”的含義呢?用“≥”表示“>”或 “=”,即兩者必居其一,不要求同時(shí)滿足.例如 ≥0,其中只有“>”成立,“=”就不成立.同樣“≤”也有類似的情況.
、垡虼擞腥税補(bǔ)>b,b
現(xiàn)代數(shù)學(xué)中又用符號(hào)“≮”表示“不小于”,用“≯”表示“不大于”.有了這些符號(hào),在表示不等關(guān)系時(shí),就非常得心應(yīng)手了.
二、師生互動(dòng)
和學(xué)生一起進(jìn)行知識(shí)梳理
(一)由師生一起交流“不等號(hào)的由來(lái)”① ,引出學(xué)習(xí)目標(biāo)——認(rèn)識(shí)不等式
1.引起動(dòng)機(jī):
教師配合課本“觀察與思考”“一起探究”等 內(nèi)容提問:用數(shù)學(xué)式子要如何表示小卡車趕超大卡車?
2.學(xué)生進(jìn)行討論并回 答 。
3.教師舉例說(shuō)明:
數(shù)學(xué)符號(hào)“>、<、≥、≤、≠”稱為不等號(hào),而含有這些符號(hào)的式子就稱為不等式。
4.結(jié)合自己的舊經(jīng)驗(yàn),讓學(xué)生認(rèn)識(shí)“≤”所代表的意思。
教師說(shuō)明:
在小學(xué)時(shí)我們學(xué)過(guò)“小于”的符號(hào),也就是說(shuō)如果“a小于b”,我們可以記為“a
5.仿照上面說(shuō)明由學(xué)生進(jìn)行“≥”的介紹.
6.教師舉例提問:
如果我們要比較兩數(shù)的大小關(guān)系時(shí),可能會(huì)有幾種情形?
(當(dāng)我們比較兩數(shù)的大小關(guān)系時(shí),下面三種情形只有一種會(huì)成立,即 ab)
7.老師提問:如果我們只知道“a不大于b”,那該如何用不等號(hào)來(lái)表 示呢?
(「a不大于b」表示「a小于b」且「a有可能等于b」,所以我們可以記錄成「a≤b」 )
8.仿照此題,引導(dǎo)學(xué)生了解“a不小于b”及“a不等于b”所代表的意義.
教師歸納說(shuō)明:不等式的意義
不等式表示現(xiàn)實(shí)世界中同類量的不等關(guān)系.在有理數(shù)大小的比較中,我們常用不等號(hào)連接兩個(gè)或兩個(gè)以上的有理數(shù),如-3>-5.不等式含有不等 號(hào),常見的不等號(hào)有五種,其讀法及意義如下:
(1)“>”讀作“大于”,表示其左邊的量比右邊的量大.
(2)“<”讀作“小于”,表示其左邊的量比右邊的.量小.
(3)“≥”讀作“大于等于”,即“不小于”,表示其左邊的量大于或等于右邊.
(4)“≤”讀作“小于等于”,即“不大于”,表示其左邊的量小于或等于右邊.
(5)“≠”讀作“不等于”,它說(shuō)明兩個(gè)量之間的關(guān)系是不相等的,但不能明確哪個(gè)大,哪個(gè)小
(二)用不等式表示數(shù)量關(guān)系
關(guān)鍵是明確問題中常用的表示不等關(guān)系詞語(yǔ)的意義,并注意隱含在具體的情境中的不等關(guān)系.
補(bǔ)充例1. 下面列出的不等式中,正確的是 ( )
(A)a不是負(fù)數(shù),可表示成a>0m]
(B)x不大于3,可表示成x<3
(C)m與4的差是負(fù)數(shù),可表示成m-4<0
(D)x與2的和是非負(fù)數(shù),可表示成x+2>0
解析:用不等式表示下列數(shù)量關(guān)系,關(guān)鍵是能用代數(shù)式準(zhǔn)確地表示出有關(guān)的數(shù)量,并掌握"不大于"、“不超過(guò)”、“是非負(fù)數(shù)”等詞語(yǔ)的正確含義及表示符號(hào).
因?yàn)?a不是負(fù)數(shù),可表示成a≥0;
x不大于3,應(yīng)表示成x≤3xx§k.Com]
x與2的和是非負(fù)數(shù)應(yīng)表示成x+2≥0,
所以 只有(C)正確. 故本題應(yīng)選(C).
(三)不等式成立的意義
對(duì)于含有未知數(shù)的不等式來(lái)說(shuō),當(dāng)未知數(shù)取某些值時(shí),不等式的左、右兩邊符合不等號(hào)所表示的大小關(guān)系,我們說(shuō)不等式成立;當(dāng)未知數(shù)取某些值時(shí),不等式的左、右兩邊 不符合不等號(hào)所表示的大小關(guān)系,我們說(shuō)不等式不成立.強(qiáng)調(diào)用“≥”表示“>”或“=” ,即兩者必居其一,不要求同時(shí)滿足.例如 ≥0,其中只有“>”成立,“=”就不成立.
三、補(bǔ)充練習(xí)
作業(yè):課本P4習(xí)題
5分鐘練習(xí)
1.“x的2倍與3的和是非負(fù)數(shù)”列成不等式為( )
A.2x+3≥0 B.2x+3>0 C.2x+3≤0 D.2x+3<0
2.幾個(gè)人分若干個(gè)蘋果,若每人3個(gè)還余5個(gè),若去掉1人,則每人4個(gè)還有剩余.設(shè)有x個(gè)人,可列不等式為_____________________.
〖分層作業(yè)〗
基礎(chǔ)知識(shí)
1.判斷下列各式哪些是等式、哪些是不等式、哪些既不是等式也不是不等式.
、賦+y ②3x>7 ③5=2x+3 ④x2≥0 ⑤2x-3y=1 ⑥52
2.用適當(dāng)符號(hào)表示下列關(guān)系.
(1)a的7 倍與15的和比b的3倍大;
(2)a是非正數(shù);
3.在-1,- ,- ,0, ,1,3,7,100中哪些能使不等式x+1<2成立?
綜合運(yùn)用
4.通過(guò)測(cè)量一棵樹的樹圍,(樹干的周長(zhǎng))可以計(jì)算出它的樹齡,通常規(guī)定以樹干離地面1.5m的地方作為測(cè)量部位,某樹栽種時(shí)的樹圍為5 cm,以后樹圍每年增加約3 cm.這棵樹至少生長(zhǎng)多少年其樹圍才能超過(guò)2.4 m?請(qǐng)你列出關(guān)系式.
5.燃放某種禮花彈時(shí),為了確保安全,人在點(diǎn)燃導(dǎo)火線后要在燃放前轉(zhuǎn)移到10 m以外的安全區(qū)域.已知 導(dǎo)火線的燃燒速度為0.02 m/s,人離開的速度為4 m/s,導(dǎo)火線的長(zhǎng)x(m)應(yīng)滿足怎樣的關(guān)系式?請(qǐng)你列出.
不等式的基本性質(zhì)數(shù)學(xué)教案 10
教學(xué)目標(biāo)
1.理解不等式的性質(zhì),掌握不等式各個(gè)性質(zhì)的條件和結(jié)論之間的邏輯關(guān)系,并掌握它們的證明方法以及功能、運(yùn)用;
2.掌握兩個(gè)實(shí)數(shù)比較大小的一般方法;
3.通過(guò)不等式性質(zhì)證明的學(xué)習(xí),提高學(xué)生邏輯推論的能力;
4.提高本節(jié)內(nèi)容的學(xué)習(xí),培養(yǎng)學(xué)生條理思維的習(xí)慣和認(rèn)真嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度;
教學(xué)建議
1.教材分析
(1)知識(shí)結(jié)構(gòu)
本節(jié)首先通過(guò)數(shù)形結(jié)合,給出了比較實(shí)數(shù)大小的方法,在這個(gè)基礎(chǔ)上,給出了不等式的性質(zhì),一共講了五個(gè)定理和三個(gè)推論,并給出了嚴(yán)格的證明。
(2)重點(diǎn)、難點(diǎn)分析
在“不等式的性質(zhì)”一節(jié)中,聯(lián)系了實(shí)數(shù)和數(shù)軸的對(duì)應(yīng)關(guān)系、比較實(shí)數(shù)大小的方法,復(fù)習(xí)了初中學(xué)過(guò)的不等式的基本性質(zhì)。
不等式的性質(zhì)是穿越本章內(nèi)容的一條主線,無(wú)論是算術(shù)平均數(shù)與幾何平均數(shù)的定理的證明及其應(yīng)用,不等式的證明和解一些簡(jiǎn)單的不等式,無(wú)不以不等式的性質(zhì)作為基礎(chǔ)。
本節(jié)的重點(diǎn)是比較兩個(gè)實(shí)數(shù)的大小,不等式的五個(gè)定理和三個(gè)推論;難點(diǎn)是不等式的性質(zhì)成立的條件及其它的應(yīng)用。
、俦容^實(shí)數(shù)的大小
教材運(yùn)用數(shù)形結(jié)合的觀點(diǎn),從實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng)出發(fā), 與初中學(xué)過(guò)的知識(shí)“在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大”利用數(shù)軸可以比較數(shù)的大小。
指出比較兩實(shí)數(shù)大小的方法是求差比較法:
比較兩個(gè)實(shí)數(shù)a與b的大小,歸結(jié)為判斷它們的差a-b的符號(hào),而這又必然歸結(jié)到實(shí)數(shù)運(yùn)算的符號(hào)法則。
比較兩個(gè)代數(shù)式的大小,實(shí)際上是比較它們的值的大小,而這又歸結(jié)為判斷它們的差的符號(hào)。
②理清不等式的幾個(gè)性質(zhì)的關(guān)系
教材中的不等式共5個(gè)定理3個(gè)推論,是從證明過(guò)程安排順序的.從這幾個(gè)性質(zhì)的分類來(lái)說(shuō),可以分為三類:
。á瘢┎坏仁降睦碚撔再|(zhì): (對(duì)稱性)
(傳遞性)
。á颍┮粋(gè)不等式的性質(zhì):
。╪∈N,n>1)
。╪∈N,n>1)
。á螅﹥蓚(gè)不等式的性質(zhì):
2.教法建議
本節(jié)課的核心是培養(yǎng)學(xué)生的變形技能,訓(xùn)練學(xué)生的推理能力.為今后證明不等式、解不等式的學(xué)習(xí)奠定技能上和理論上的基礎(chǔ).
授課方法可以采取講授與問答相結(jié)合的方式.通過(guò)問答形式不斷地給學(xué)生設(shè)置疑問(即:設(shè)疑);對(duì)教學(xué)難點(diǎn),再由講授形式解決疑問.(即:解疑).主要思路是:教師設(shè)疑→學(xué)生討論→教師啟發(fā)→解疑.
教學(xué)過(guò)程
可分為:發(fā)現(xiàn)定理、定理證明、定理應(yīng)用,采用由形象思維到抽象思維的過(guò)渡,發(fā)現(xiàn)定理、證明定理.采用類比聯(lián)想,變形轉(zhuǎn)化,應(yīng)用定理或應(yīng)用定理的證明思路;解決一些較簡(jiǎn)單的證明題.
第一課時(shí)
教學(xué)目標(biāo)
1.掌握實(shí)數(shù)的運(yùn)算性質(zhì)與大小順序間關(guān)系;
2.掌握求差法比較兩實(shí)數(shù)或代數(shù)式大小;
3.強(qiáng)調(diào)數(shù)形結(jié)合思想。
教學(xué)重點(diǎn)
比較兩實(shí)數(shù)大小
教學(xué)難點(diǎn)
理解實(shí)數(shù)運(yùn)算的符號(hào)法則
教學(xué)方法
啟發(fā)式
教學(xué)過(guò)程
一、復(fù)習(xí)回顧
我們知道,實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,在數(shù)軸上不同的兩點(diǎn)中,右邊的點(diǎn)表示的實(shí)數(shù)比左邊的點(diǎn)表示的實(shí)數(shù)大。例如,在右圖中,點(diǎn)A表示實(shí)數(shù),點(diǎn)B表示實(shí)數(shù),點(diǎn)A在點(diǎn)B右邊,那么。我們?cè)倏从覉D,表示減去所得的差是一個(gè)大于0的數(shù)即正數(shù)。一般地:若,則是正數(shù);逆命題也正確。類似地,若,則 是負(fù)數(shù);若 ,則 。它們的逆命題都正確。這就是說(shuō):
由此可見,要比較兩個(gè)實(shí)數(shù)的大小,只要考察它們的差就可以了,這也是我們這節(jié)課將要學(xué)習(xí)的主要內(nèi)容。
二、講授新課
1. 比較兩實(shí)數(shù)大小的方法——求差比較法
比較兩個(gè)實(shí)數(shù)與的.大小,歸結(jié)為判斷它們的差的符號(hào),而這又必然歸結(jié)到實(shí)數(shù)運(yùn)算的符號(hào)法則。
比較兩個(gè)代數(shù)式的大小,實(shí)際上是比較它們的值的大小,而這又歸結(jié)為判斷它們的差的符號(hào)。
接下來(lái),我們通過(guò)具體的例題來(lái)熟悉求差比較法。
2. 例題講解
例1 比較 與 的大小。
分析:此題屬于兩代數(shù)式比較大小,實(shí)際上是比較它們的值的大小,可以作差,然后展開,合并同類項(xiàng)之后,判斷差值正負(fù),并根據(jù)實(shí)數(shù)運(yùn)算的符號(hào)法則來(lái)得出兩個(gè)代數(shù)式的大小。
解:
∴
例2 已知,比較( 與 的大小。
分析:此題與例1基本類似,也屬于兩個(gè)代數(shù)式比較大小,但是其中的x有一定的限制,應(yīng)該在對(duì)差值正負(fù)判斷時(shí)引起注意,對(duì)于限制條件的應(yīng)用經(jīng)常被學(xué)生所忽略。
由 得 ,從而請(qǐng)同學(xué)們想一想,在例2中,如果沒有 這個(gè)條件,那么比較的結(jié)果如何?
(學(xué)生回答:若沒有 這一條件,則 ,從而 大于或等于 )
為了使大家進(jìn)一步掌握求差比較法,我們來(lái)進(jìn)行下面的練習(xí)。
三、課堂練習(xí)
1.比較 的大小。
2.如果 ,比較 的大小。
3.已知,比較 與 的大小。
要求:學(xué)生板演練習(xí),老師講評(píng),并強(qiáng)調(diào)學(xué)生注意加限制條件的題目。
課堂小結(jié)
通過(guò)本節(jié)學(xué)習(xí),大家要明確實(shí)數(shù)運(yùn)算的符號(hào)法則, 掌握求差比較法來(lái)比較兩實(shí)數(shù)或代數(shù)式的大小。
課后作業(yè)
習(xí)題6,1 1,2,3。
【不等式的基本性質(zhì)數(shù)學(xué)教案】相關(guān)文章:
數(shù)學(xué)教案:概率的基本性質(zhì)07-25
高二數(shù)學(xué)教案不等式的性質(zhì)(通用10篇)05-22
比例的基本性質(zhì)下冊(cè)數(shù)學(xué)教案08-23
數(shù)的整除、分?jǐn)?shù)、小數(shù)基本性質(zhì)的數(shù)學(xué)教案10-29
《比的基本性質(zhì)》教學(xué)設(shè)計(jì)08-17
《分?jǐn)?shù)的基本性質(zhì)》教學(xué)設(shè)計(jì)09-23
《比例的基本性質(zhì)》教學(xué)設(shè)計(jì)09-27