亚欧洲精品在线观看,窝窝影院午夜看片,久久国产成人午夜av影院宅,午夜91,免费国产人成网站,ts在线视频,欧美激情在线一区

試題

全國III卷高考數(shù)學(xué)真題及答案

時(shí)間:2025-03-05 06:35:16 偲穎 試題 我要投稿
  • 相關(guān)推薦

2024年全國III卷高考數(shù)學(xué)真題及答案

  在學(xué)習(xí)和工作的日常里,我們會經(jīng)常接觸并使用真題,真題是學(xué);蚋髦鬓k方考核某種知識才能的標(biāo)準(zhǔn)。你知道什么樣的真題才是好真題嗎?下面是小編整理的2024年全國III卷高考數(shù)學(xué)真題及答案,歡迎閱讀,希望大家能夠喜歡。

2024年全國III卷高考數(shù)學(xué)真題及答案

  真題及答案1:

  1.某個(gè)自然數(shù)被187除余52,被188除也余52,那么這個(gè)自然數(shù)被22除的余數(shù)是_______.

  【答案】8

  【解】這個(gè)自然數(shù)減去52后,就能被187和188整除,為了說明方便,這個(gè)自然數(shù)減去52后所得的數(shù)用M表示,因187=17×11,故M能被11整除;因M能被188整除,故,M也能被2整除,所以,M也能被11×2=22整除,原來的自然數(shù)是M+52,因?yàn)镸能被22整除,當(dāng)考慮M+52被22除后的余數(shù)時(shí),只需要考慮52被22除后的余數(shù).52=22×2+8這個(gè)自然數(shù)被22除余8.

  2.有一堆球,如果是10的倍數(shù)個(gè),就平均分成10堆,并且拿走9堆;如果不是10的倍數(shù)個(gè),就添加幾個(gè)球(不超過9個(gè)),使這堆球成為10的倍數(shù)個(gè),然后將這些球平均分成10堆,并且拿走9堆。這個(gè)過程稱為一次操作。如果最初這堆球的個(gè)數(shù)為

  123456789101112…9899.

  連續(xù)進(jìn)行操作,直至剩下1個(gè)球?yàn)橹梗敲垂策M(jìn)行了次操作;共添加了個(gè)球.

  【答案】189次;802個(gè)。

  【解】這個(gè)數(shù)共有189位,每操作一次減少一位。操作188次后,剩下2,再操作一次,剩下1。共操作189次。這個(gè)189位數(shù)的各個(gè)數(shù)位上的數(shù)字之和是

  (1+2+3+…+9)20=900。

  由操作的過程知道,添加的球數(shù)相當(dāng)于將原來球數(shù)的每位數(shù)字都補(bǔ)成9,再添1個(gè)球。所以共添球1899-900+1=802(個(gè))。

  真題及答案2:

  一、選擇題

  1.某年級有6個(gè)班,分別派3名語文教師任教,每個(gè)教師教2個(gè)班,則不同的任課方法種數(shù)為( )

  A.C26C24C22 B.A26A24A22

  C.C26C24C22C33 D.A26C24C22A33

  [答案] A

  2.從單詞“equation”中取5個(gè)不同的字母排成一排,含有“qu”(其中“qu”相連且順序不變)的不同排法共有( )

  A.120種 B.480種

  C.720種 D.840種

  [答案] B

  [解析] 先選后排,從除qu外的6個(gè)字母中任選3個(gè)字母有C36種排法,再將qu看成一個(gè)整體(相當(dāng)于一個(gè)元素)與選出的3個(gè)字母進(jìn)行全排列有A44種排法,由分步乘法計(jì)數(shù)原理得不同排法共有C36A44=480(種).

  3.從編號為1、2、3、4的四種不同的種子中選出3種,在3塊不同的土地上試種,每塊土地上試種一種,其中1號種子必須試種,則不同的試種方法有( )

  A.24種 B.18種

  C.12種 D.96種

  [答案] B

  [解析] 先選后排C23A33=18,故選B.

  4.把0、1、2、3、4、5這六個(gè)數(shù),每次取三個(gè)不同的數(shù)字,把其中最大的數(shù)放在百位上排成三位數(shù),這樣的三位數(shù)有( )

  A.40個(gè) B.120個(gè)

  C.360個(gè) D.720個(gè)

  [答案] A

  [解析] 先選取3個(gè)不同的數(shù)有C36種方法,然后把其中最大的數(shù)放在百位上,另兩個(gè)不同的數(shù)放在十位和個(gè)位上,有A22種排法,故共有C36A22=40個(gè)三位數(shù).

  5.(2010湖南理,7)在某種信息傳輸過程中,用4個(gè)數(shù)字的一個(gè)排列(數(shù)字允許重復(fù))表示一個(gè)信息,不同排列表示不同信息,若所用數(shù)字只有0和1,則與信息0110至多有兩個(gè)對應(yīng)位置上的數(shù)字相同的信息個(gè)數(shù)為( )

  A.10 B.11

  C.12 D.15

  [答案] B

  [解析] 與信息0110至多有兩個(gè)對應(yīng)位置上的數(shù)字相同的信息包括三類:

  第一類:與信息0110只有兩個(gè)對應(yīng)位置上的數(shù)字相同有C24=6(個(gè))

  第二類:與信息0110只有一個(gè)對應(yīng)位置上的數(shù)字相同有C14=4(個(gè))

  第三類:與信息0110沒有一個(gè)對應(yīng)位置上的數(shù)字相同有C04=1(個(gè))

  與信息0110至多有兩個(gè)對應(yīng)位置上的數(shù)字相同的信息有6+4+1=11(個(gè))

  6.北京《財(cái)富》全球論壇開幕期間,某高校有14名志愿者參加接待工作.若每天排早,中,晚三班,每班4人,每人每天最多值一班,則開幕式當(dāng)天不同的排班種數(shù)為( )

  A.C414C412C48 B.C1214C412C48

  C.C1214C412C48A33 D.C1214C412C48A33

  [答案] B

  [解析] 解法1:由題意知不同的排班種數(shù)為:C414C410C46=14×13×12×114!10×9×8×74!6×52。紺1214C412C48.

  故選B.

  解法2:也可先選出12人再排班為:C1214C412C48C44,即選B.

  7.(2009湖南理5)從10名大學(xué)畢業(yè)生中選3人擔(dān)任村長助理,則甲、乙至少有1人入選,而丙沒有入選的不同選法的種數(shù)為( )

  A.85 B.56

  C.49 D.28

  [答案] C

  [解析] 考查有限制條件的組合問題.

  (1)從甲、乙兩人中選1人,有2種選法,從除甲、乙、丙外的7人中選2人,有C27種選法,由分步乘法計(jì)數(shù)原理知,共有2C27=42種.

  (2)甲、乙兩人全選,再從除丙外的其余7人中選1人共7種選法.

  由分類計(jì)數(shù)原理知共有不同選法42+7=49種.

  8.以一個(gè)正三棱柱的頂點(diǎn)為頂點(diǎn)的四面體共有( )

  A.6個(gè) B.12個(gè)

  C.18個(gè) D.30個(gè)

  [答案] B

  [解析] C46-3=12個(gè),故選B.

  9.(2009遼寧理,5)從5名男醫(yī)生、4名女醫(yī)生中選3名醫(yī)生組成一個(gè)醫(yī)療小分隊(duì),要求其中男、女醫(yī)生都有,則不同的組隊(duì)方案共有( )

  A.70種 B.80種

  C.100種 D.140種

  [答案] A

  [解析] 考查排列組合有關(guān)知識.

  解:可分兩類,男醫(yī)生2名,女醫(yī)生1名或男醫(yī)生1名,女醫(yī)生2名,

  ∴共有C25C14+C15C24=70,∴選A.

  10.設(shè)集合Ⅰ={1,2,3,4,5}.選擇Ⅰ的兩個(gè)非空子集A和B,要使B中最小的數(shù)大于A中最大的數(shù),則不同的選擇方法共有( )

  A.50種 B.49種

  C.48種 D.47種

  [答案] B

  [解析] 主要考查集合、排列、組合的基礎(chǔ)知識.考查分類討論的思想方法.

  因?yàn)榧螦中的最大元素小于集合B中的最小元素,A中元素從1、2、3、4中取,B中元素從2、3、4、5中取,由于A、B非空,故至少要有一個(gè)元素.

  1° 當(dāng)A={1}時(shí),選B的方案共有24-1=15種,

  當(dāng)A={2}時(shí),選B的方案共有23-1=7種,

  當(dāng)A={3}時(shí),選B的方案共有22-1=3種,

  當(dāng)A={4}時(shí),選B的方案共有21-1=1種.

  故A是單元素集時(shí),B有15+7+3+1=26種.

  2° A為二元素集時(shí),

  A中最大元素是2,有1種,選B的方案有23-1=7種.

  A中最大元素是3,有C12種,選B的方案有22-1=3種.故共有2×3=6種.

  A中最大元素是4,有C13種.選B的方案有21-1=1種,故共有3×1=3種.

  故A中有兩個(gè)元素時(shí)共有7+6+3=16種.

  3° A為三元素集時(shí),

  A中最大元素是3,有1種,選B的方案有22-1=3種.

  A中最大元素是4,有C23=3種,選B的方案有1種,

  ∴共有3×1=3種.

  ∴A為三元素時(shí)共有3+3=6種.

  4° A為四元素時(shí),只能是A={1、2、3、4},故B只能是{5},只有一種.

  ∴共有26+16+6+1=49種.

  二、填空題

  11.北京市某中學(xué)要把9臺型號相同的電腦送給西部地區(qū)的三所希望小學(xué),每所小學(xué)至少得到2臺,共有______種不同送法.

  [答案] 10

  [解析] 每校先各得一臺,再將剩余6臺分成3份,用插板法解,共有C25=10種.

  12.一排7個(gè)座位分給3人坐,要求任何兩人都不得相鄰,所有不同排法的總數(shù)有________種.

  [答案] 60

  [解析] 對于任一種坐法,可視4個(gè)空位為0,3個(gè)人為1,2,3則所有不同坐法的種數(shù)可看作4個(gè)0和1,2,3的一種編碼,要求1,2,3不得相鄰故從4個(gè)0形成的5個(gè)空檔中選3個(gè)插入1,2,3即可.

  ∴不同排法有A35=60種.

  13.(09海南寧夏理15)7名志愿者中安排6人在周六、周日兩天參加社區(qū)公益活動.若每天安排3人,則不同的安排方案共有________種(用數(shù)字作答).

  [答案] 140

  [解析] 本題主要考查排列組合知識.

  由題意知,若每天安排3人,則不同的安排方案有

  C37C34=140種.

  14.2010年上海世博會期間,將5名志愿者分配到3個(gè)不同國家的場館參加接待工作,每個(gè)場館至少分配一名志愿者的方案種數(shù)是________種.

  [答案] 150

  [解析] 先分組共有C35+C25C232種,然后進(jìn)行排列,有A33種,所以共有(C35+C25C232)A33=150種方案.

  三、解答題

  15.解方程Cx2+3x+216=C5x+516.

  [解析] 因?yàn)镃x2+3x+216=C5x+516,所以x2+3x+2=5x+5或(x2+3x+2)+(5x+5)=16,即x2-2x-3=0或x2+8x-9=0,所以x=-1或x=3或x=-9或x=1.經(jīng)檢驗(yàn)x=3和x=-9不符合題意,舍去,故原方程的解為x1=-1,x2=1.

  16.在∠MON的邊OM上有5個(gè)異于O點(diǎn)的點(diǎn),邊ON上有4個(gè)異于O點(diǎn)的點(diǎn),以這10個(gè)點(diǎn)(含O點(diǎn))為頂點(diǎn),可以得到多少個(gè)三角形?

  [解析] 解法1:(直接法)分幾種情況考慮:O為頂點(diǎn)的三角形中,必須另外兩個(gè)頂點(diǎn)分別在OM、ON上,所以有C15C14個(gè),O不為頂點(diǎn)的三角形中,兩個(gè)頂點(diǎn)在OM上,一個(gè)頂點(diǎn)在ON上有C25C14個(gè),一個(gè)頂點(diǎn)在OM上,兩個(gè)頂點(diǎn)在ON上有C15C24個(gè).因?yàn)檫@是分類問題,所以用分類加法計(jì)數(shù)原理,共有C15C14+C25C14+C15C24=5×4+10×4+5×6=90(個(gè)).

  解法2:(間接法)先不考慮共線點(diǎn)的問題,從10個(gè)不同元素中任取三點(diǎn)的組合數(shù)是C310,但其中OM上的6個(gè)點(diǎn)(含O點(diǎn))中任取三點(diǎn)不能得到三角形,ON上的5個(gè)點(diǎn)(含O點(diǎn))中任取3點(diǎn)也不能得到三角形,所以共可以得到C310-C36-C35個(gè),即C310-C36-C35=10×9×81×2×3-6×5×41×2×3-5×41×2=120-20-10=90(個(gè)).

  解法3:也可以這樣考慮,把O點(diǎn)看成是OM邊上的點(diǎn),先從OM上的6個(gè)點(diǎn)(含O點(diǎn))中取2點(diǎn),ON上的4點(diǎn)(不含O點(diǎn))中取一點(diǎn),可得C26C14個(gè)三角形,再從OM上的5點(diǎn)(不含O點(diǎn))中取一點(diǎn),從ON上的4點(diǎn)(不含O點(diǎn))中取兩點(diǎn),可得C15C24個(gè)三角形,所以共有C26C14+C15C24=15×4+5×6=90(個(gè)).

  17.某次足球比賽共12支球隊(duì)參加,分三個(gè)階段進(jìn)行.

  (1)小組賽:經(jīng)抽簽分成甲、乙兩組,每組6隊(duì)進(jìn)行單循環(huán)比賽,以積分及凈剩球數(shù)取前兩名;

  (2)半決賽:甲組第一名與乙組第二名,乙組第一名與甲組第二名作主客場交叉淘汰賽(每兩隊(duì)主客場各賽一場)決出勝者;

  (3)決賽:兩個(gè)勝隊(duì)參加決賽一場,決出勝負(fù).

  問全程賽程共需比賽多少場?

  [解析] (1)小組賽中每組6隊(duì)進(jìn)行單循環(huán)比賽,就是6支球隊(duì)的任兩支球隊(duì)都要比賽一次,所需比賽的場次即為從6個(gè)元素中任取2個(gè)元素的組合數(shù),所以小組賽共要比賽2C26=30(場).

  (2)半決賽中甲組第一名與乙組第二名(或乙組第一名與甲組第二名)主客場各賽一場,所需比賽的場次即為從2個(gè)元素中任取2個(gè)元素的排列數(shù),所以半決賽共要比賽2A22=4(場).

  (3)決賽只需比賽1場,即可決出勝負(fù).

  所以全部賽程共需比賽30+4+1=35(場).

  18.有9本不同的課外書,分給甲、乙、丙三名同學(xué),求在下列條件下,各有多少種分法?

  (1)甲得4本,乙得3本,丙得2本;

  (2)一人得4本,一人得3本,一人得2本;

  (3)甲、乙、丙各得3本.

  [分析] 由題目可獲取以下主要信息:

 、9本不同的課外書分給甲、乙丙三名同學(xué);

 、陬}目中的3個(gè)問題的條件不同.

  解答本題先判斷是否與順序有關(guān),然后利用相關(guān)的知識去解答.

  [解析] (1)分三步完成:

  第一步:從9本不同的書中,任取4本分給甲,有C49種方法;

  第二步:從余下的5本書中,任取3本給乙,有C35種方法;

  第三步:把剩下的書給丙有C22種方法,

  ∴共有不同的分法有C49C35C22=1260(種).

  (2)分兩步完成:

  第一步:將4本、3本、2本分成三組有C49C35C22種方法;

  第二步:將分成的三組書分給甲、乙、丙三個(gè)人,有A33種方法,

  ∴共有C49C35C22A33=7560(種).

  (3)用與(1)相同的方法求解,

  得C39C36C33=1680(種).

【全國III卷高考數(shù)學(xué)真題及答案】相關(guān)文章:

全國III卷高考英語真題及答案08-21

全國III卷高考數(shù)學(xué)真題(理科)09-29

2016高考數(shù)學(xué)真題試卷(全國III卷)10-09

2016年全國III卷高考語文真題及答案07-20

2016年全國III卷高考真題「理綜」09-05

2016全國I卷高考數(shù)學(xué)真題及答案09-19

高考理科數(shù)學(xué)真題及答案(全國I卷)09-26

2016年高考文綜真題(全國III卷)07-31

2017年高考語文真題及參考答案(全國卷III)09-28