高中數(shù)學(xué)數(shù)列有哪些知識點(diǎn)
數(shù)列是以正整數(shù)集為定義域的函數(shù),是一列有序的數(shù)。數(shù)列中的每一個(gè)數(shù)都叫做這個(gè)數(shù)列的項(xiàng)。下面是小編為大家精心推薦高中數(shù)學(xué)數(shù)列知識點(diǎn)總結(jié),希望能夠?qū)δ兴鶐椭?/p>
高中數(shù)學(xué)數(shù)列有哪些知識點(diǎn) 篇1
數(shù)列的相關(guān)概念
1.數(shù)列概念
①數(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。數(shù)列可以看作一個(gè)定義域?yàn)檎麛?shù)集N*或其有限子集{1,2,3,…,n}的函數(shù),其中的{1,2,3,…,n}不能省略。
、谟煤瘮(shù)的觀點(diǎn)認(rèn)識數(shù)列是重要的思想方法,一般情況下函數(shù)有三種表示方法,數(shù)列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項(xiàng)公式給出數(shù)列和以遞推公式給出數(shù)列。
③函數(shù)不一定有解析式,同樣數(shù)列也并非都有通項(xiàng)公式。
等差數(shù)列
1.等差數(shù)列通項(xiàng)公式
an=a1+(n-1)d
n=1時(shí)a1=S1
n≥2時(shí)an=Sn-Sn-1
an=kn+b(k,b為常數(shù))推導(dǎo)過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b
2.等差中項(xiàng)
由三個(gè)數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡單的等差數(shù)列。這時(shí),A叫做a與b的等差中項(xiàng)(arithmeticmean)。
有關(guān)系:A=(a+b)÷2
3.前n項(xiàng)和
倒序相加法推導(dǎo)前n項(xiàng)和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
Sn=an+an-1+an-2+······+a1
=an+(an-d)+(an-2d)+······+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個(gè))=n(a1+an)
∴Sn=n(a1+an)÷2
等差數(shù)列的前n項(xiàng)和等于首末兩項(xiàng)的和與項(xiàng)數(shù)乘積的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
4.等差數(shù)列性質(zhì)
一、任意兩項(xiàng)am,an的關(guān)系為:
an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項(xiàng)公式。
二、從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N*
三、若m,n,p,q∈N*,且m+n=p+q,則有am+an=ap+aq
四、對任意的k∈N*,有
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數(shù)列。
等比數(shù)列
1.等比中項(xiàng)
如果在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng)。
有關(guān)系:
注:兩個(gè)非零同號的實(shí)數(shù)的等比中項(xiàng)有兩個(gè),它們互為相反數(shù),所以G=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。
2.等比數(shù)列通項(xiàng)公式
an=a1*q’(n-1)(其中首項(xiàng)是a1,公比是q)
an=Sn-S(n-1)(n≥2)
前n項(xiàng)和
當(dāng)q≠1時(shí),等比數(shù)列的前n項(xiàng)和的公式為
Sn=a1(1-q’n)/(1-q)=(a1-a1*q’n)/(1-q)(q≠1)
當(dāng)q=1時(shí),等比數(shù)列的前n項(xiàng)和的公式為
Sn=na1
3.等比數(shù)列前n項(xiàng)和與通項(xiàng)的關(guān)系
an=a1=s1(n=1)
an=sn-s(n-1)(n≥2)
4.等比數(shù)列性質(zhì)
(1)若m、n、p、q∈N*,且m+n=p+q,則am·an=ap·aq;
(2)在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列。
(3)從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中項(xiàng):q、r、p成等比數(shù)列,則aq·ap=ar,ar則為ap,aq等比中項(xiàng)。
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底指數(shù)冪后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個(gè)意義下,我們說:一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的。
(5)等比數(shù)列前n項(xiàng)之和Sn=a1(1-q’n)/(1-q)
(6)任意兩項(xiàng)am,an的關(guān)系為an=am·q’(n-m)
(7)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零。
注意:上述公式中a’n表示a的n次方。
高中數(shù)學(xué)數(shù)列有哪些知識點(diǎn) 篇2
1、高二數(shù)學(xué)數(shù)列的定義
按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個(gè)數(shù)都叫做數(shù)列的項(xiàng)。
(1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列。
(2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個(gè)相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,…。
(4)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個(gè)數(shù)列中的某一個(gè)確定的數(shù),是一個(gè)函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個(gè)數(shù)在數(shù)列中的位置序號,它是自變量的值,相當(dāng)于f(n)中的n。
(5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個(gè)相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個(gè)相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別。如:2,3,4,5,6這5個(gè)數(shù)按不同的次序排列時(shí),就會(huì)得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合。
2、高二數(shù)學(xué)數(shù)列的分類
(1)根據(jù)數(shù)列的項(xiàng)數(shù)多少可以對數(shù)列進(jìn)行分類,分為有窮數(shù)列和無窮數(shù)列。在寫數(shù)列時(shí),對于有窮數(shù)列,要把末項(xiàng)寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列。
(2)按照項(xiàng)與項(xiàng)之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動(dòng)數(shù)列、常數(shù)列。
3、高二數(shù)學(xué)數(shù)列的通項(xiàng)公式
數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的`規(guī)律,這個(gè)規(guī)律通常是用式子f(n)來表示的,
這兩個(gè)通項(xiàng)公式形式上雖然不同,但表示同一個(gè)數(shù)列,正像每個(gè)函數(shù)關(guān)系不都能用解析式表達(dá)出來一樣,也不是每個(gè)數(shù)列都能寫出它的通項(xiàng)公式;有的數(shù)列雖然有通項(xiàng)公式,但在形式上,又不一定是唯一的,僅僅知道一個(gè)數(shù)列前面的有限項(xiàng),無其他說明,數(shù)列是不能確定的,通項(xiàng)公式更非唯一。如:數(shù)列1,2,3,4,…,
由公式寫出的后續(xù)項(xiàng)就不一樣了,因此,通項(xiàng)公式的歸納不僅要看它的前幾項(xiàng),更要依據(jù)數(shù)列的構(gòu)成規(guī)律,多觀察分析,真正找到數(shù)列的內(nèi)在規(guī)律,由數(shù)列前幾項(xiàng)寫出其通項(xiàng)公式,沒有通用的方法可循。
再強(qiáng)調(diào)對于數(shù)列通項(xiàng)公式的理解注意以下幾點(diǎn):
(1)數(shù)列的通項(xiàng)公式實(shí)際上是一個(gè)以正整數(shù)集N*或它的有限子集{1,2,…,n}為定義域的函數(shù)的表達(dá)式。
(2)如果知道了數(shù)列的通項(xiàng)公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個(gè)數(shù)列的各項(xiàng);同時(shí),用數(shù)列的通項(xiàng)公式也可判斷某數(shù)是否是某數(shù)列中的一項(xiàng),如果是的話,是第幾項(xiàng)。
(3)如所有的函數(shù)關(guān)系不一定都有解析式一樣,并不是所有的數(shù)列都有通項(xiàng)公式。
如2的不足近似值,精確到1,0。1,0。01,0。001,0。000 1,…所構(gòu)成的數(shù)列1,1。4,1。41,1。414,1。414 2,…就沒有通項(xiàng)公式。
(4)有的數(shù)列的通項(xiàng)公式,形式上不一定是唯一的,正如舉例中的:
(5)有些數(shù)列,只給出它的前幾項(xiàng),并沒有給出它的構(gòu)成規(guī)律,那么僅由前面幾項(xiàng)歸納出的數(shù)列通項(xiàng)公式并不唯一。
4、高二數(shù)學(xué)數(shù)列的圖象
對于數(shù)列4,5,6,7,8,9,10每一項(xiàng)的序號與這一項(xiàng)有下面的對應(yīng)關(guān)系:
序號:1 2 3 4 5 6 7
項(xiàng):4 5 6 7 8 9 10
這就是說,上面可以看成是一個(gè)序號集合到另一個(gè)數(shù)的集合的映射。因此,從映射、函數(shù)的觀點(diǎn)看,數(shù)列可以看作是一個(gè)定義域?yàn)檎疦*(或它的有限子集{1,2,3,…,n})的函數(shù),當(dāng)自變量從小到大依次取值時(shí),對應(yīng)的一列函數(shù)值。這里的函數(shù)是一種特殊的函數(shù),它的自變量只能取正整數(shù)。
由于數(shù)列的項(xiàng)是函數(shù)值,序號是自變量,數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)和解析式。
數(shù)列是一種特殊的函數(shù),數(shù)列是可以用圖象直觀地表示的。
數(shù)列用圖象來表示,可以以序號為橫坐標(biāo),相應(yīng)的項(xiàng)為縱坐標(biāo),描點(diǎn)畫圖來表示一個(gè)數(shù)列,在畫圖時(shí),為方便起見,在平面直角坐標(biāo)系兩條坐標(biāo)軸上取的單位長度可以不同,從數(shù)列的圖象表示可以直觀地看出數(shù)列的變化情況,但不精確。
把數(shù)列與函數(shù)比較,數(shù)列是特殊的函數(shù),特殊在定義域是正整數(shù)集或由以1為首的有限連續(xù)正整數(shù)組成的集合,其圖象是無限個(gè)或有限個(gè)孤立的點(diǎn)。
高中數(shù)學(xué)數(shù)列有哪些知識點(diǎn) 篇3
數(shù)列求和
等差數(shù)列:在一列數(shù)中,任意相鄰兩個(gè)數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。
基本概念:首項(xiàng):等差數(shù)列的第一個(gè)數(shù),一般用a1表示;
項(xiàng)數(shù):等差數(shù)列的所有數(shù)的個(gè)數(shù),一般用n表示;
公差:數(shù)列中任意相鄰兩個(gè)數(shù)的差,一般用d表示;
通項(xiàng):表示數(shù)列中每一個(gè)數(shù)的公式,一般用an表示;
數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示。
基本思路:等差數(shù)列中涉及五個(gè)量:a1 ,an, d, n, sn,,通項(xiàng)公式中涉及四個(gè)量,如果己知其中三個(gè),就可求出第四個(gè);求和公式中涉及四個(gè)量,如果己知其中三個(gè),就可以求這第四個(gè)。
基本公式:通項(xiàng)公式:an = a1+(n-1)d;
通項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)一1) ×公差;
數(shù)列和公式:sn,= (a1+ an)×n÷2;
數(shù)列和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2;
項(xiàng)數(shù)公式:n= (an+ a1)÷d+1;
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1;
公差公式:d =(an-a1))÷(n-1);
公差=(末項(xiàng)-首項(xiàng))÷(項(xiàng)數(shù)-1);
關(guān)鍵問題:確定已知量和未知量,確定使用的公式。
【高中數(shù)學(xué)數(shù)列有哪些知識點(diǎn)】相關(guān)文章:
初一數(shù)學(xué)有理數(shù)知識點(diǎn)有哪些10-09
小學(xué)數(shù)學(xué)讀數(shù)寫數(shù)知識點(diǎn)11-18
考研數(shù)學(xué)高數(shù)有哪些考點(diǎn)12-15
高中數(shù)學(xué)橢圓知識點(diǎn)必看12-13
高中數(shù)學(xué)必修三知識點(diǎn)02-10
考研數(shù)一數(shù)二數(shù)三適用專業(yè)有哪些08-16
考研數(shù)學(xué)高數(shù)最常考哪些題型12-19
考研高數(shù)系統(tǒng)復(fù)習(xí)有哪些重點(diǎn)12-18
小升初語數(shù)外備考方法有哪些09-12