亚欧洲精品在线观看,窝窝影院午夜看片,久久国产成人午夜av影院宅,午夜91,免费国产人成网站,ts在线视频,欧美激情在线一区

初一數學知識點歸納

時間:2024-08-04 18:40:05 初一 我要投稿

[熱門]初一數學知識點歸納

  在我們上學期間,是不是聽到知識點,就立刻清醒了?知識點就是掌握某個問題/知識的學習要點。為了幫助大家掌握重要知識點,以下是小編為大家收集的初一數學知識點歸納,僅供參考,希望能夠幫助到大家。

[熱門]初一數學知識點歸納

初一數學知識點歸納1

  普查:為了一定的目的而對考察對象進行的全面調查.

  總體:所要考察對象的全體稱為總體

  個休:組成總體的每一個考察對象稱為個體.

  抽樣調查:從總體中抽取部分個體進行調查.

  樣本:總體中抽取的一部分個體叫做總體的一個樣本.

  樣本容量:樣本中個體的.數目.

  頻數:每個對象出現的次數

  頻率:每個對象出現的次數與總次數的比值

初一數學知識點歸納2

  一、將考試的一些錯誤信息進行分類

  ①遺憾之錯

  就是分明會做,反而做錯了的題。

  比如說,“審題之錯”是由于審題出現失誤,看錯數字等造成的;“計算之錯”是由于計算出現差錯造成的;“抄寫之錯”是在草稿紙上做對了,往試卷上一抄就寫錯了、漏掉了;“表達之錯”是自己答案正確但與題目要求的表達不一致,如單位混用等。

  ②似非之錯

  理解的不夠透徹,應用得不夠自如;回答不嚴密、不完整;第一遍做對了,一改反而改錯了;或第一遍做錯了,后來又改對了;一道題做到一半做不下去了等等。

 、蹮o為之錯

  由于不會,因而答錯了或猜的,或者根本沒有答。這是無思路、不理解,更談不上應用的問題。

  一般情況下,這三類錯誤的比例是2:7:1,你也可以自己分析一下自己的三類錯誤比例。得出結論后,就知道問題出在哪里,要針對性進行解決。

  二、出現這些錯誤情況的原因

 、俦粍訉W習

  許多同學有很強的依賴或懶惰的心理,只是被動的跟隨老師的慣性運轉,沒有掌握學習的主動權。表現在不定計劃、坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所有內容。

 、趯W不得法

  老師上課一般都要講清知識點的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯系,只是趕作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。

 、鄄恢匾暬A

  一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。

  ④數學思維不夠寬廣

  有的同學不會對知識的深度、廣度,以及各章節(jié)進行總結,并融會貫通,不會“多角度”考慮,不會“概括”、“類比”、“聯想”、“抽象”等各種方法與思維。

  ⑤死記硬背,不能遷移知識

  初中數學主要是以形象、通俗的語言方式進行表達。有些同學建立了統(tǒng)一的思維模式,就只能機械的進行操作,形成一種定勢方式。而不會加強知識的遷移,對一道題,要盡可能多想解法,多開動“腦筋”,使思維“活”起來。對一些相近的題,要善于總結,形成“一法多題”。

  三、科學的學習方法

  學生僅僅想學是不夠的,還必須“會學”,要講究科學的學習方法,提高學習效率,才能變被動為主動。

 、倥囵B(yǎng)良好的學習習慣

  良好的學習習慣包括制定計劃、課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結和課外學習幾個方面。

  制定計劃明確學習目的。合理的學習計劃是推動主動學習和克服困難的內在動力。既有長遠打算,又有短期安排,執(zhí)行過程中嚴格要求自己,磨煉學習意志。

  課前預習是取得較好學習效果的基礎。預習不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。

  上課是理解和掌握基本知識、基本技能和基本方法的'關鍵環(huán)節(jié)。上課專心聽重點難點,把老師補充的內容記錄下來,而不是全抄全錄,顧此失彼。

  及時復習是提高效率學習的重要一環(huán)。通過反復閱讀教材,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯系起來,進行分析比較。

  獨立作業(yè)是通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所有新知識的理解和對新技能的掌握過程。

  解決疑難是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。做錯的作業(yè)要再做一遍,對錯誤的地方沒弄清楚要反復思考。

  系統(tǒng)小結是通過積極思考,達到全面系統(tǒng)深刻地掌握知識和發(fā)展認識能力的重要環(huán)節(jié)。小結要在系統(tǒng)復習的基礎上以教材為依據,參照筆記與資料,通過分析、綜合、類比、概括,提示知識間的內在聯系,以達到所有知識融會貫通的目的。

  課外學習包括閱讀課外書籍與報刊,課外學習是課內學習的補充和繼續(xù),它不僅能豐富同學們的文化科學知識,加深和鞏固課內所學的知識,而且能夠滿足和發(fā)展我們的興趣愛好,培養(yǎng)獨立學習和工作的能力。

 、谥刃驖u進,防止急躁

  由于學生年齡較小,閱歷有限,有些學生容易急躁,有的同學貪多求快,有的同學想靠幾天“沖刺”一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振。學習是一個長期的鞏固舊知識、發(fā)現新知識的積累過程,決非一朝一夕可以完成。學習是一項循序漸進、長期積累的過程,要有恒心、決心,有一些拼搏的心,要防止急躁心里,才能取得最后的成功。

 、垩芯繉W科特點,尋找最佳學習方法

  數學學科擔負著培養(yǎng)學生運算能力、邏輯思維能力、空間想象能力,以及運用所學知識分析問題、解決問題的能力的重任。它的特點是具有高度的抽象性、邏輯性和廣泛性,對能力要求較高。具體尋找方法因人而異,但學習的五個環(huán)節(jié):預習、上課、復習、作業(yè)、總結是少不了的。

  ④多交流、多反思解疑,化解分化點

  多和同學交流,多向老師請教,多開展變式練習,化解分化點,以達到靈活掌握知識、運用知識的目的。

  只要學習科學方法,有恒心,有信心,有拼搏心,克服急躁心里,克服“小聰明”,多交流,多反思,養(yǎng)成良好的學習習慣,就能順利度過學習適應期,就能在今后的數學成績突飛猛進。

  四、學數學的幾個建議:

  1、記數學筆記,特別是對概念理解的不同側面和數學規(guī)律,以及老師補充的課外知識。

  2、建立數學糾錯本。

  3、記憶數學規(guī)律和數學小結論。

  4、與同學建立良好關系,爭做“小老師”,形成數學學習“互助組”。

  5、增加數學課外閱讀,加大自學力度。

  6、反復鞏固,消滅前學后忘。

  7、學會總結歸類。

初一數學知識點歸納3

  本章的主要內容可以概括為有理數的概念與有理數的運算兩部分。有理數的概念可以利用數軸來認識、理解,同時,利用數軸又可以把這些概念串在一起。有理數的運算是全章的重點。在具體運算時,要注意四個方面,一是運算法則,二是運算律,三是運算順序,四是近似計算。

  基礎知識:

  1、正數(positionnumber):大于0的數叫做正數。

  2、負數(negationnumber):在正數前面加上負號-的數叫做負數。

  3、0既不是正數也不是負數。

  4、有理數(rationalnumber):正整數、負整數、0、正分數、負分數都可以寫成分數的形式,這樣的數稱為有理數。

  5、數軸(numberaxis):通常,用一條直線上的點表示數,這條直線叫做數軸。

  數軸滿足以下要求:

  (1)在直線上任取一個點表示數0,這個點叫做原點(origin);

  (2)通常規(guī)定直線上從原點向右(或上)為正方向,從原點向左(或下)為負方向;

  (3)選取適當的長度為單位長度。

  6、相反數(oppositenumber):絕對值相等,只有負號不同的兩個數叫做互為相反數。

  7、絕對值(absolutevalue)一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。記做|a|。由絕對值的定義可得:|a-b|表示數軸上a點到b點的距離。一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0.正數大于0,0大于負數,正數大于負數;兩個負數,絕對值大的'反而小。

  8、有理數加法法則

  (1)同號兩數相加,取相同的符號,并把絕對值相加。

  (2)絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0.

  (3)一個數同0相加,仍得這個數。

  加法交換律:有理數的加法中,兩個數相加,交換加數的位置,和不變。表達式:a+b=b+a.

  加法結合律:有理數的加法中,三個數相加,先把前兩個數相加或者先把后兩個數相加,和不變。

  表達式:(a+b)+c=a+(b+c)

  9、有理數減法法則:減去一個數,等于加這個數的相反數。表達式:a-b=a+(-b)

  10、有理數乘法法則

  兩數相乘,同號得正,異號得負,并把絕對值相乘。

  任何數同0相乘,都得0.

  乘法交換律:一般地,有理數乘法中,兩個數相乘,交換因數的位置,積相等。表達式:ab=ba

  乘法結合律:三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。表達式:(ab)c=a(bc)

  乘法分配律:一般地,一個數同兩個的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。

  表達式:a(b+c)=ab+ac

  11、倒數

  1除以一個數(零除外)的商,叫做這個數的倒數。如果兩個數互為倒數,那么這兩個數的積等于1.

  12、有理數除法法則:兩數相除,同號得負,異號得正,并把絕對值相除。0除以任何一個不等于0的數,都得0.

  13、有理數的乘方:求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。an中,a叫做底數(basenumber),n叫做指數(exponent)。

  根據有理數的乘法法則可以得出:負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何正整數次冪都是0.

  14、有理數的混合運算順序

  (1)先乘方,再乘除,最后加減的順序進行;

  (2)同級運算,從左到右進行;

  (3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。

  15、科學技術法:把一個大于10的數表示成a﹡10n的形式(其中a是整數數位只有一位的數(即010),n是正整數)。

  16、近似數(approximatenumber):

  17、有理數可以寫成m/n(m、n是整數,n0)的形式。另一方面,形如m/n(m、n是整數,n0)的數都是有理數。所以有理數可以用m/n(m、n是整數,n0)表示。

初一數學知識點歸納4

  第二章:整式的加減

  1、單項式:;單獨的一個數或一個字母也是單項式

  2、系數:;

  3、單項式的次數:;

  4、多項式:;

  叫做多項式的項;的項叫做常數項。

  5、多項式的次數:;

  6、整式:;

  7、同類項:;

  8、把多項式中的同類項合并成一項,叫做合并同類項;

  合并同類項后,所得項的系數是合并同前各同類項的系數的和,且字母部分不變。

  9、去括號:(1)如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同

  (2)如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反

  10、一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項

  第三章:一次方程(組)

  一、方程的有關概念

  1、方程的概念:

  (1)含有未知數的等式叫方程。

  (2)在一個方程中,只含有一個未知數,并且未知數的指數是1,系數不為0,這樣的`方程叫一元一次方程。

  2、等式的基本性質:

  (1)等式兩邊同時加上(或減去)同一個代數式,所得結果仍是等式。若a=b,則a+c=b+c或a–c=b–c。

  (2)等式兩邊同時乘以(或除以)同一個數(除數不能為0),所得結果仍是等式。若a=b,則ac=bc或

  二、解方程

  1、移項的有關概念:

  把方程中的某一項改變符號后,從方程的一邊移到另一邊,叫做移項。這個法則是根據等式的性質1推出來的,是解方程的依據。把某一項從方程的左邊移到右邊或從右邊移到左邊,移動的項一定要變號。

  2、解一元一次方程的步驟:

  解一元一次方程的步驟

  主要依據

  1、去分母

  等式的性質2

  2、去括號

  去括號法則、乘法分配律

  3、移項

  等式的性質1

  4、合并同類項

  合并同類項法則

  5、系數化為1

  等式的性質2

  6、檢驗

  3、二元一次方程組

  (1)將二元一次方程用含有一個未知數的代數式表示另一個未知數;

  (2)解二元一次方程組的指導思想是轉化的思想;

  (3)解二元一次方程組的方法有:加減消元法;代入消元法;

  二、列方程解應用題

  1、列方程解應用題的一般步驟:

  (1)將實際問題抽象成數學問題;

  (2)分析問題中的已知量和未知量,找出等量關系;

  (3)設未知數,列出方程;

  (4)解方程;

  (5)檢驗并作答。

  2、一些實際問題中的規(guī)律和等量關系:

  (1)幾種常用的面積公式:

  長方形面積公式:S=ab,a為長,b為寬,S為面積;正方形面積公式:S=a2,a為邊長,S為面積;

  梯形面積公式:S=,a,b為上下底邊長,h為梯形的高,S為梯形面積;

  圓形的面積公式:,r為圓的半徑,S為圓的面積;

  三角形面積公式:,a為三角形的一邊長,h為這一邊上的高,S為三角形的面積。

  (2)幾種常用的周長公式:

  長方形的周長:L=2(a+b),a,b為長方形的長和寬,L為周長。

  正方形的周長:L=4a,a為正方形的邊長,L為周長。

  圓:L=2πr,r為半徑,L為周長。

初一數學知識點歸納5

  一、知識點:

  1、“三線八角”

 、偃绾斡删找角:一看線,二看型。

  同位角是“F”型;

  內錯角是“Z”型;

  同旁內角是“U”型。

 、谌绾斡山钦揖:組成角的三條線中的公共直線就是截線。

  2、平行公理:

  如果兩條直線都和第三條直線平行,那么這兩條直線也平行。

  簡述:平行于同一條直線的兩條直線平行。

  補充定理:

  如果兩條直線都和第三條直線垂直,那么這兩條直線也平行。

  簡述:垂直于同一條直線的兩條直線平行。

  3、平行線的判定和性質:

  判定定理性質定理

  條件結論條件結論

  同位角相等兩直線平行兩直線平行同位角相等

  內錯角相等兩直線平行兩直線平行內錯角相等

  同旁內角互補兩直線平行兩直線平行同旁內角互補

  4、圖形平移的性質:

  圖形經過平移,連接各組對應點所得的線段互相平行(或在同一直線上)并且相等。

  5、三角形三邊之間的關系:

  三角形的任意兩邊之和大于第三邊;

  三角形的任意兩邊之差小于第三邊。

  若三角形的三邊分別為a、b、c,則

  6、三角形中的主要線段:

  三角形的高、角平分線、中線。

  注意:

  ①三角形的高、角平分線、中線都是線段。

 、诟、角平分線、中線的應用。

  7、三角形的內角和:

  三角形的3個內角的和等于180°;

  直角三角形的兩個銳角互余;

  三角形的一個外角等于與它不相鄰的兩個內角的和;

  三角形的一個外角大于與它不相鄰的任意一個內角。

  8、多邊形的內角和:

  n邊形的內角和等于(n-2)180°;

  任意多邊形的外角和等于360°。

  第八章冪的運算

  冪(p5

  初一數學知識點總結

  相反數

  (1)相反數的概念:只有符號不同的兩個數叫做互為相反數.

  (2)相反數的意義:掌握相反數是成對出現的,不能單獨存在,從數軸上看,除0外,互為相反數的兩個數,它們分別在原點兩旁且到原點距離相等.

  (3)多重符號的化簡:與“+”個數無關,有奇數個“﹣”號結果為負,有偶數個“﹣”號,結果為正.

  (4)規(guī)律方法總結:求一個數的相反數的方法就是在這個數的前邊添加“﹣”,如a的相反數是﹣a,m+n的相反數是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括號.

  2代數式求值

  (1)代數式的:用數值代替代數式里的字母,計算后所得的結果叫做代數式的值.

  (2)代數式的求值:求代數式的值可以直接代入、計算.如果給出的代數式可以化簡,要先化簡再求值.

  題型簡單總結以下三種:

  ①已知條件不化簡,所給代數式化簡;

  ②已知條件化簡,所給代數式不化簡;

  ③已知條件和所給代數式都要化簡.

  3由三視圖判斷幾何體

  (1)由三視圖想象幾何體的形狀,首先,應分別根據主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側面的形狀,然后綜合起來考慮整體形狀.

  (2)由物體的三視圖想象幾何體的形狀是有一定難度的,可以從以下途徑進行分析:

 、俑鶕饕晥D、俯視圖和左視圖想象幾何體的前面、上面和左側面的形狀,以及幾何體的長、寬、高;

 、趶膶嵕和虛線想象幾何體看得見部分和看不見部分的輪廓線;

 、凼煊浺恍┖唵蔚膸缀误w的三視圖對復雜幾何體的想象會有幫助;

 、芾糜扇晥D畫幾何體與有幾何體畫三視圖的互逆過程,反復練習,不斷總結方法

  七年級的數學知識點總結

  本章重點:一元一次不等式的解法,本章難點:了解不等式的解集和不等式組的解集的確定,正確運用不等式基本性質3。

  本章關鍵:徹底弄清不等式和等式的基本性質的區(qū)別.

  (1)不等式概念:用不等號(“≠”、“”)表示的不等關系的式子叫做不等式(2)不等式的基本性質,它是解不等式的理論依據.

  (3)分清不等式的解集和解不等式是兩個完全不同的概念.(4)不等式的解一般有無限多個數值,把它們表示在數軸上,(5)一元一次不等式的概念、解法是本章的重點和核心

  (6)一元一次不等式的解集,在數軸上表示一元一次不等式的解集

  (7)由兩個一元一次不等式組成的一元一次不等式組.一元一次不等式組可以由幾個(同未知數的)一元一次不等式組成(8).利用數軸確定一元一次不等式組的解集第六章:

  1.二元一次方程,二元一次方程組以及它的解,明確二元一次方程組的解是一對未知數的值,會檢驗一對數值是不是某一個二元一次方程組的解.

  2.一次方程組的兩種基本解法,能靈活運用代入法,加減法解二元一次方程組及簡單的三元一次方程組.

  3.根據給出的應用問題,列出相應的二元一次方程組或三元一次方程組,從而求出問題的解,并能根據問題的實際意義,檢查結果是否合理.本章的'重點是:二元一次方程組的解法代入法,加減法以及列一次方程組解簡單的應用問題.

  本章的難點是:

  1.會用適當的消元方法解二元一次方程組及簡單的三元一次方程組;

  2.正確地找出應用題中的相等關系,列出一次方程組.第七章

  本章重點是:整式的乘除運算,特別是對冪的'運算及乘法公式的應用要達到熟練程度.本章難點是:對乘法公式結構特征和公式中字母意義的理解及乘法公式的靈活應用

  1.冪的運算性質,正確地表述這些性質,并能運用它們熟練地進行有關計算.

  2.單項式乘以(或除以)單項式,多項式乘以(或除以)單項式,以及多項式乘以多項式的法則,熟練地運用它們進行計算.

  3.乘法公式的推導過程,能靈活運用乘法公式進行計算.

  4.熟練地運用運算律、運算法則進行運算

  5.體會用字母表示數和用字母表示式子的意義.通過式的變形,深入理解轉化的思想方法.

  第八章:

  1、認識事物的幾種方法:觀察與實驗歸納與類比猜想與證明生活中的說理數學中的說理

  2、定義、命題、公理、定理

  3、簡單幾何圖形中的推理

  4、余角、補交、對頂角

  5、平行線的判定判定:一個公理兩個定理。

  公理:兩直線被第三條直線所截,如果同位角相等(數量關系)兩直線平行(位置關系)定理:內錯角相等(數量關系)兩直線平行(位置關系)定理:同旁內角互補(數量關系)兩直線平行(位置關系).平行線的性質:

  兩直線平行,同位角相等兩直線平行,內錯角相等兩直線平行,同旁內角互補由圖形的“位置關系”確定“數量關系”

  第九章:

  重點:因式分解的方法,難點:分析多項式的特點,選擇適合的分解方法

  1.因式分解的概念;

  2.因式分解的方法:提取公因式法、公式法、分組分解法(十字相乘法)

  3.運用因式分解解決一些實際問題.(包括圖形習題)

  第十章:

  1.重點是:用統(tǒng)計知識解決現實生活中的實際問題.難點是:用統(tǒng)計知識解決實際問題.

  統(tǒng)計初步的基本知識,平均數、中位數、眾數等的計算、

  2.了解數據的收集與整理、繪畫三種統(tǒng)計圖.

  3.應用統(tǒng)計知識解決實際問題能解決與統(tǒng)計相關的綜合問題.

初一數學知識點歸納6

  1.有理數:

  (1)凡能寫成形式的數,都是有理數.正整數、0、負整數統(tǒng)稱整數;正分數、負分數統(tǒng)稱分數;整數和分數統(tǒng)稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;

  (2)有理數的分類:①②

  (3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區(qū)域,這四個區(qū)域的數也有自己的特性;

  (4)自然數0和正整數;a>0a是正數;a<0a是負數;

  a≥0a是正數或0a是非負數;a≤0a是負數或0a是非正數.

  2.數軸:數軸是規(guī)定了原點、正方向、單位長度的一條直線.

  3.相反數:

  (1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

  (2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

  (3)相反數的和為0a+b=0a、b互為相反數.

  4.絕對值:

  (1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

  (2)絕對值可表示為:或;絕對值的問題經常分類討論;

  (3);;

  (4)|a|是重要的非負數,即|a|≥0;注意:|a|·|b|=|a·b|,.

  5.有理數比大。

  (1)正數的絕對值越大,這個數越大;

 。2)正數永遠比0大,負數永遠比0。

 。3)正數大于一切負數;

 。4)兩個負數比大小,絕對值大的'反而小;

 。5)數軸上的兩個數,右邊的數總比左邊的數大;

 。6)大數-小數>0,小數-大數<0.

  6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那么的倒數是;倒數是本身的數是±1;若ab=1a、b互為倒數;若ab=-1a、b互為負倒數.

  7.有理數加法法則:

  (1)同號兩數相加,取相同的符號,并把絕對值相加;

 。2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

 。3)一個數與0相加,仍得這個數.

  8.有理數加法的運算律:

 。1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).

  9.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b).

  10有理數乘法法則:

 。1)兩數相乘,同號為正,異號為負,并把絕對值相乘;

 。2)任何數同零相乘都得零;

 。3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.

  11有理數乘法的運算律:

  (1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

 。3)乘法的分配律:a(b+c)=ab+ac.

  12.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,.

  13.有理數乘方的法則:

 。1)正數的任何次冪都是正數;

 。2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數時:(-a)n=an或(a-b)n=(b-a)n.

  14.乘方的定義:

 。1)求相同因式積的運算,叫做乘方;

 。2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

 。3)a2是重要的非負數,即a2≥0;若a2+|b|=0a=0,b=0;

 。4)據規(guī)律底數的小數點移動一位,平方數的小數點移動二位.

  15.科學記數法:把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.

  16.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位.

  17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.

  18.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數學計算的最重要的原則.

  19.特殊值法:是用符合題目要求的數代入,并驗證題設成立而進行猜想的一種方法,但不能用于證明.

初一數學知識點歸納7

  第一章

  1.1 正數與負數

  在以前學過的0以外的數前面加上負號“-”的數叫負數(negative number)。

  與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上“+”)。

  1.2 有理數

  正整數、0、負整數統(tǒng)稱整數(integer),正分數和負分數統(tǒng)稱分數(fraction)。

  整數和分數統(tǒng)稱有理數(rational number)。

  通常用一條直線上的點表示數,這條直線叫數軸(number axis)。

  數軸三要素:原點、正方向、單位長度。

  在直線上任取一個點表示數0,這個點叫做原點(origin)。

  只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)

  數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。

  一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

  1.3 有理數的加減法

  有理數加法法則:

  1.同號兩數相加,取相同的符號,并把絕對值相加。

  2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的.兩個數相加得0。

  3.一個數同0相加,仍得這個數。

  有理數減法法則:減去一個數,等于加這個數的相反數。

  1.4 有理數的乘除法

  有理數乘法法則:兩數相乘,同號得正,異號得負,并把絕對值相乘。任何數同0相乘,都得0。

  乘積是1的兩個數互為倒數。

  有理數除法法則:除以一個不等于0的數,等于乘這個數的倒數。

  兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。 mì

  求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。

  負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。

  把一個大于10的數表示成a×10的n次方的形式,使用的就是科學計數法。

  從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant digit)。

  第二章 一元一次方程

  2.1 從算式到方程

  方程是含有未知數的等式。

  方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。

  解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解(solution)。

  等式的性質:

  1.等式兩邊加(或減)同一個數(或式子),結果仍相等。

  2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。

  2.2 從古老的代數書說起--一元一次方程的討論(1)

  把等式一邊的某項變號后移到另一邊,叫做移項。

  第三章 圖形認識初步

  3.1 多姿多彩的圖形

  幾何體也簡稱體(solid)。包圍著體的是面(surface)。

  3.2 直線、射線、線段

  線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。

  連接兩點間的線段的長度,叫做這兩點的距離。

  3.3 角的度量

  1度=60分 1分=60秒 1周角=360度 1平角=180度

  3.4 角的比較與運算

  如果兩個角的和等于90度(直角),就說這兩個叫互為余角(compiementary angle),即其中每一個角是另一個角的余角。

  如果兩個角的和等于180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。

  等角(同角)的補角相等。

  等角(同角)的余角相等。

  相信大家一定仔細閱讀了由數學網為大家整理的初一數學下學期期末備考知識點歸納,希望大家在考試中都能取得好成績。

初一數學知識點歸納8

 、偾髇個相同因數的積的運算,叫乘方,乘方的結果叫冪。在a的n次方中,a叫做底數,n叫做指數。負數的奇次冪是負數,負數的偶次冪是正數(負奇負,負偶正)。正數的任何次冪都是正數,0的任何次冪都是0。新- 課- 標-第 -一- 網

 、谂即畏降扔谝粋正數的值有兩個(兩個互為相反數)如:a2=4,a=2或a=-2

  注意:|a|+b2=0 得:a=0 且 b=0

  強記:a0=1(a≠0);(-1)2=1 ;-12=-1;(-1)3=-1;

  -13=-1; (-2)2 =4;-22=-4;(-2)3 =-8;-23=-8

 、塾欣頂档'混合運算法則:先乘方,再乘除,最后加減;同級運算,

  從左到右進行;如有括號,先做括號內的運算,按小括號、中括號、

  大括號依次進行。注意:12-4×5=12-20(不能把-變+)

 、馨岩粋大于10的數表示成a×10的n次方的形式,使用的就是科學計數法,注意a的范圍為1≤a n比原整數位減1。(注意科學計數法與原數的互劃。

 、菟纳嵛迦氲侥囊晃痪褪蔷_到哪一位,四舍五入時望后多看一位采用四舍五入。比如:3.5449精確到0.01就是3.54而不是3.55. (再如: 2.40萬:精確到百位;6.5×104精確到千位,有數量級和科學計數法的要還原成原數,看數量級和科學計數法的最后一個數)。

初一數學知識點歸納9

  有理數的加法法則:

  ⑴同號兩數相加,取相同的符號,并把絕對值相加。

 、平^對值不相等的異號兩數相加,取絕對值較大的'加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。

 、且粋數同0相加,仍得這個數。

  兩個數相加,交換加數的位置,和不變。

  加法交換律:a+b=b+a

  三個數相加,先把前面兩個數相加,或者先把后兩個數相加,和不變。

  加法結合律:(a+b)+c=a+(b+c)

初一數學知識點歸納10

  7.1與三角形有關的線段

  7.1.1三角形的邊

  由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。相鄰兩邊組成的角,叫做三角形的內角,簡稱三角形的角。

  頂點是A、B、C的三角形,記作“△ABC”,讀作“三角形ABC”。

  三角形兩邊的和大于第三邊。

  7.1.2三角形的高、中線和角平分線

  7.1.3三角形的穩(wěn)定性

  三角形具有穩(wěn)定性。

  7.2與三角形有關的角

  7.2.1三角形的內角

  三角形的內角和等于180。

  7.2.2三角形的外角

  三角形的一邊與另一邊的延長線組成的角,叫做三角形的外角。

  三角形的一個外角等于與它不相鄰的兩個內角的和。

  三角形的一個外角大于與它不相鄰的任何一個內角。

  7.3多邊形及其內角和

  7.3.1多邊形

  在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

  連接多邊形不相鄰的兩個頂點的.線段,叫做多邊形的對角線。

  n邊形的對角線公式:

  各個角都相等,各條邊都相等的多邊形叫做正多邊形。

  7.3.2多邊形的內角和

  n邊形的內角和公式:180(n-2)

  多邊形的外角和等于360。

  7.4課題學習鑲嵌

初一數學知識點歸納11

  知識網絡

  概念、定義:

  1、列方程時,要先設字母表示未知數,然后根據問題中的相等關系,寫出還有未知數的等式——方程(equation)。

  2、含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程(linearequationwithoneunknown)。

  3、分析實際問題中的數量關系,利用其中的等量關系列出方程,是用數學解決實際問題的一種方法。

  4、等式的性質1:等式兩邊加(或減)同一個數(或式子),結果仍相等。

  5、等式的性質2:等式兩邊乘同一個數,或除以一個不為0的數,結果仍相等。

  6、把等式一邊的某項變號后移到另一邊,叫做移項。

  7、應用:行程問題:s=v×t工程問題:工作總量=工作效率×時間

  盈虧問題:利潤=售價-成本利率=利潤÷成本×100%

  售價=標價×折扣數×10%儲蓄利潤問題:利息=本金×利率×時間

  本息和=本金+利息

  圖形初步認識

  知識網絡:

  概念、定義:

  1、我們把實物中抽象的各種圖形統(tǒng)稱為幾何圖形(geometricfigure)。

  2、有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的各部分不都在同一平面內,它們是立體圖形(solidfigure)。

  3、有些幾何圖形(如線段、角、三角形、長方形、圓等)的各部分都在同一平面內,它們是平面圖形(planefigure)。

  4、將由平面圖形圍成的立體圖形表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖(net)。

  5、幾何體簡稱為體(solid)。

  6、包圍著體的是面(surface),面有平的面和曲的面兩種。

  7、面與面相交的`地方形成線(line),線和線相交的地方是點(point)。

  8、點動成面,面動成線,線動成體。

  9、經過探究可以得到一個基本事實:經過兩點有一條直線,并且只有一條直線。

  簡述為:兩點確定一條直線(公理)。

  10、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交(intersection),這個公共點叫做它們的交點(pointofintersection)。

  11、點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點(center)。

  12、經過比較,我們可以得到一個關于線段的基本事實:兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。(公理)

  13、連接兩點間的線段的長度,叫做這兩點的距離(distance)。

  14、角∠(angle)也是一種基本的幾何圖形。

  15、把一個周角360等分,每一份就是1度(degree)的角,記作1°;把一度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″。

  16、從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線(angularbisector)。

  17、如果兩個角的和等于90°(直角),就是說這兩個叫互為余角(complementary

  angle),即其中的每一個角是另一個角的余角。

  18、如果兩個角的和等于180°(平角),就說這兩個角互為補角(supplementary

  angle),即其中一個角是另一個角的補角

  19、等角的補角相等,等角的余角相等。

  聰明出于勤奮,天才在于積累。我們要振作精神,下苦功學習。編輯以備借鑒。

初一數學知識點歸納12

  9.1 平行四邊形的性質

  1.平行四邊形

  2.平行四邊形的性質,等腰梯形的性質與判定

  9.2 平行四邊形的判定

  1.定義:兩組對邊分別平行的四邊形叫平行四邊形

  2.平行四邊形的性質

  (1)平行四邊形的對邊平行且相等;

  (2)平行四邊形的鄰角互補,對角相等;

  (3)平行四邊形的對角線互相平分;

  9.3 菱形

  菱形的判定定理:

  1.一組鄰邊相等的平行四邊形是菱形(rhombus)。

  2.對角線互相垂直的平行四邊形是菱形。

  9.4 矩形 正方形

  矩形的性質:

  ①矩形的四個角都是直角.

 、诰匦蔚膶蔷相等.

 、劬匦尉哂衅叫兴倪呅蔚乃行再|.

  9.5 梯形

  一、梯形的定義、性質及判定:

  1.定義:只有一組對邊平行的四邊形叫做梯形.兩腰相等的梯形叫做等腰梯形;有一個角是直角的梯形叫做直角梯形.

  9.6 多邊形的內角和與外角和

  【n 邊形內角和公式】

  n 邊形內角和等于 (n-2)×180°.

  【n 邊形外角和定理】

  n 邊形的外角和等于 360°.

  9.7 平面圖形的密鋪

  1.用形狀、大小完全相同的三角形可以密鋪.因為三角形的.內角和為180°,所以,用6個這樣的三角形就可以組合起來鑲嵌成一個平面.

  9.8 中心對稱的圖形

  圓

  1、定義:圓是到定點的距離等于定長的點的集合

  2、點與圓的位置關系:

  如果⊙O的半徑為r,點P到圓心O的距離為d,那么

  點P在圓內,則dr;

  點P在圓上,則dr;

  點P在圓外,則dr;反之亦成立。

初一數學知識點歸納13

  一、目標與要求

  同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角。

  內錯角:∠2與∠6像這樣的一對角叫做內錯角。

  同旁內角:∠2與∠5像這樣的一對角叫做同旁內角。

  9.平行:在平面上兩條直線、空間的兩個平面或空間的一條直線與一平面之間沒有任何公共點時,稱它們平行。

  10.平行線:在同一平面內,不相交的兩條直線叫做平行線。

  11.命題:判斷一件事情的語句叫命題。

  12.真命題:正確的命題,即如果命題的題設成立,那么結論一定成立。

  13.假命題:條件和結果相矛盾的命題是假命題。

  14.平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。

  15.對應點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。

  16.定理與性質

  對頂角的性質:對頂角相等。

  17.垂線的性質:

  性質1:過一點有且只有一條直線與已知直線垂直。

  性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

  18.平行公理:經過直線外一點有且只有一條直線與已知直線平行。

  平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。

  19.平行線的性質:

  性質1:兩直線平行,同位角相等。

  性質2:兩直線平行,內錯角相等。

  性質3:兩直線平行,同旁內角互補。

  20.平行線的判定:

  判定1:同位角相等,兩直線平行。

  判定2:內錯角相等,兩直線平行。

  判定3:同旁內角相等,兩直線平行。

  21.命題的擴展

  三種命題

  (1)對于兩個命題,如果一個命題的條件和結論分別是另外一個命題的結論和條件,那么這兩個命題叫做互逆命題,其中一個命題叫做原命題,另外一個命題叫做原命題的逆命題。

  (2)對于兩個命題,如果一個命題的條件和結論分別是另外一個命題的條件的否定和結論的否定,那么這兩個命題叫做互否命題,其中一個命題叫做原命題,另外一個命題叫做原命題的否命題。

  (3)對于兩個命題,如果一個命題的條件和結論分別是另外一個命題的結論的'否定和條件的否定,那么這兩個命題叫做互為逆否命題,其中一個命題叫做原命題,另外一個命題叫做原命題的逆否命題。

  四種命題的相互關系

  (1)四種命題的相互關系:原命題與逆命題互逆,否命題與原命題互否,原命題與逆否命題相互逆否,逆命題與否命題相互逆否,逆命題與逆否命題互否,逆否命題與否命題互逆。

  (2)四種命題的真假關系:

  兩個命題互為逆否命題,它們有相同的真假性。兩個命題為互逆命題或互否命題,它們的真假性沒有關系

  命題之間的關系

  (1)能夠判斷真假的陳述句叫做命題,正確的命題叫做真命題,錯誤的命題叫做假命題。

  (2)“若p,則q”形式的命題中p叫做命題的條件,q叫做命題的結論。

  (3)命題的分類:

  A:原命題:一個命題的本身稱之為原命題,如:若x>1,則f(x)=(x-1)2單調遞增。

  B:逆命題:將原命題的條件和結論顛倒的新命題,如:若f(x)=(x-1)2單調遞增,則x>1.

  C:否命題:將原命題的條件和結論全否定的新命題,但不改變條件和結論的順序,

  如:若x小于1,則f(x)=(x-1)2不單調遞增。

  D:逆否命題:將原命題的條件和結論顛倒,然后再將條件和結論全否定的新命題,

  如:若f(x)=(x-1)2不單調遞增,則x小于1.

  (4)命題的否定

  命題的否定是只將命題的結論否定的新命題,這與否命題不同。

  (5)4種命題及命題的否定的真假性關系

  原命題和逆否命題等價,否命題和逆命題等價,命題的否定與原命題的真假性相反。

  充分條件與必要條件

  (1)“若p,則q”為真命題,叫做由p推出q,記作p=>q,并且說p是q的充分條件,q是p的必要條件。

  (2)“若p,則q”為假命題,叫做由p推不出q,記作p≠>q,并且說p不是q的充分條件(或p是q的非充分條件),q不是p的必要條件(或q是p的非必要條件)。

  充要條件

  如果既有p=>q,又有q=>p,就記作p<=>q,并且說p是q的充分必要條件(或q是p的充分必要條件),簡稱充要條件。

初一數學知識點歸納14

  3.1 一元一次方程

  1、方程是含有未知數的等式。

  2、方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程。

  注意:判斷一個方程是否是一元一次方程要抓住三點:

  1)未知數所在的式子是整式(方程是整式方程);

  2)化簡后方程中只含有一個未知數;

  3)經整理后方程中未知數的次數是1.

  3、解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解。

  4、等式的性質:

  1)等式兩邊同時加(或減)同一個數(或式子),結果仍相等;

  2)等式兩邊同時乘同一個數,或除以同一個不為0的數,結果仍相等。

  注意:運用性質時,一定要注意等號兩邊都要同時變;運用性質2時,一定要注意0這個數.

  3.2 、3.3解一元一次方程

  在實際解方程的過程中,以下步驟不一定完全用上,有些步驟還需重復使用. 因此在解方程時還要注意以下幾點:

 、偃シ帜福涸诜匠虄蛇叾汲艘愿鞣帜傅淖钚」稊,不要漏乘不含分母的項;分子是一個整體,去分母后應加上括號;去分母與分母化整是兩個概念,不能混淆;

 、谌ダㄌ枺鹤駨南热バ±ㄌ枺偃ブ欣ㄌ,最后去大括號;不要漏乘括號的項;不要弄錯符號;

 、垡祈棧喊押形粗獢档捻椧频椒匠痰囊贿叄渌椂家频椒匠痰牧硪贿(移項要變符號) 移項要變號;

 、芎喜⑼愴棧翰灰獊G項,解方程是同解變形,每一步都是一個方程,不能像計算或化簡題那樣寫能連等的形式;

 、菹禂祷癁1::字母及其指數不變系數化成1,在方程兩邊都除以未知數的系數a,得到方程的解。不要分子、分母搞顛倒。

  3.4 實際問題與一元一次方程

  一、概念梳理

 、帕幸辉淮畏匠探鉀Q實際問題的一般步驟是:①審題,特別注意關鍵的字和詞的意義,弄清相關數量關系;②設出未知數(注意單位);③根據相等關系列出方程;④解這個方程;⑤檢驗并寫出答案(包括單位名稱)。

 、埔恍┕潭P椭械牡攘筷P系及典型例題參照一元一次方程應用題專練學案。

  二、思想方法(本單元常用到的數學思想方法小結)

 、沤K枷耄和ㄟ^對實際問題中的數量關系的分析,抽象成數學模型,建立一元一次方程的.思想.

  ⑵方程思想:用方程解決實際問題的思想就是方程思想.

 、腔瘹w思想:解一元一次方程的過程,實質上就是利用去分母、去括號、移項、合并同類項、未知數的系數化為1等各種同解變形,不斷地用新的更簡單的方程來代替原來的方程,最后逐步把方程轉化為x=a的形式. 體現了化“未知”為“已知”的化歸思想.

  ⑷數形結合思想:在列方程解決問題時,借助于線段示意圖和圖表等來分析數量關系,使問題中的數量關系很直觀地展示出來,體現了數形結合的優(yōu)越性.

 、煞诸愃枷耄涸诮夂帜赶禂档姆匠毯秃^對值符號的方程過程中往往需要分類討論,在解有關方案設計的實際問題的過程中往往也要注意分類思想在過程中的運用.

  三、數學思想方法的學習

  1. 解一元一次方程時,要明確每一步過程都作什么變形,應該注意什么問題.

  2. 尋找實際問題的數量關系時,要善于借助直觀分析法,如表格法,直線分析法和圖示分析法等.

  3. 列方程解應用題的檢驗包括兩個方面:⑴檢驗求得的結果是不是方程的解;

 、剖且袛喾匠痰慕馐欠穹项}目中的實際意義.

  四、應用(常見等量關系)

  行程問題:s=v×t

  工程問題:工作總量=工作效率×時間

  盈虧問題:利潤=售價-成本

  利率=利潤÷成本×100%

  售價=標價×折扣數×10%

  儲蓄利潤問題:利息=本金×利率×時間

  本息和=本金+利息

初一數學知識點歸納15

  本章的主要內容是圖形的初步認識,從生活周圍熟悉的物體入手,對物體的形狀的認識從感性逐步上升到抽象的幾何圖形。通過從不同方向看立體圖形和展開立體圖形,初步認識立體圖形與平面圖形的聯系。在此基礎上,認識一些簡單的平面圖形直線、射線、線段和角。

  一、目標與要求

  1.能從現實物體中抽象得出幾何圖形,正確區(qū)分立體圖形與平面圖形;能把一些立體圖形的問題,轉化為平面圖形進行研究和處理,探索平面圖形與立體圖形之間的關系。

  2.經歷探索平面圖形與立體圖形之間的關系,發(fā)展空間觀念,培養(yǎng)提高觀察、分析、抽象、概括的能力,培養(yǎng)動手操作能力,經歷問題解決的過程,提高解決問題的能力。

  3.積極參與教學活動過程,形成自覺、認真的學習態(tài)度,培養(yǎng)敢于面對學習困難的精神,感受幾何圖形的美感;倡導自主學習和小組合作精神,在獨立思考的基礎上,能從小組交流中獲益,并對學習過程進行正確評價,體會合作學習的重要性。

  二、知識框架

  三、難點

  立體圖形與平面圖形之間的轉化是難點;

  探索點、線、面、體運動變化后形成的圖形是難點;

  畫一條線段等于已知線段的尺規(guī)作圖方法,正確比較兩條線段長短是難點。

  四、知識點、概念總結

  1.幾何圖形:點、線、面、體這些可幫助人們有效的刻畫錯綜復雜的世界,它們都稱為幾何圖形。從實物中抽象出的各種圖形統(tǒng)稱為幾何圖形。有些幾何圖形的各部分不在同一平面內,叫做立體圖形。有些幾何圖形的各部分都在同一平面內,叫做平面圖形。雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯系的。

  2.幾何圖形的分類:幾何圖形一般分為立體圖形和平面圖形。

  13.角的種類:角的大小與邊的長短沒有關系;角的大小決定于角的兩條邊張開的`程度,張開的越大,角就越大,相反,張開的越小,角則越小。在動態(tài)定義中,取決于旋轉的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

  銳角:大于0,小于90的角叫做銳角。

  直角:等于90的角叫做直角。

  鈍角:大于90而小于180的角叫做鈍角。

  平角:等于180的角叫做平角。

  優(yōu)角:大于180小于360叫優(yōu)角。

  劣角:大于0小于180叫做劣角,銳角、直角、鈍角都是劣角。

  周角:等于360的角叫做周角。

  負角:按照順時針方向旋轉而成的角叫做負角。

  正角:逆時針旋轉的角為正角。

  0角:等于零度的角。

  余角和補角:兩角之和為90則兩角互為余角,兩角之和為180則兩角互為補角。等角的余角相等,等角的補角相等。

  對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構成兩對對頂角;閷斀堑膬蓚角相等。

  還有許多種角的關系,如內錯角,同位角,同旁內角(三線八角中,主要用來判斷平行)!

  14.幾何圖形分類

  (1)立體幾何圖形可以分為以下幾類:

  第一類:柱體;

  包括:圓柱和棱柱,棱柱又可分為直棱柱和斜棱柱,棱柱體按底面邊數的多少又可分為三棱柱、四棱柱、N棱柱;

  棱柱體積統(tǒng)一等于底面面積乘以高,即V=SH,

  第二類:錐體;

  包括:圓錐體和棱錐體,棱錐分為三棱錐、四棱錐以及N棱錐;

  棱錐體積統(tǒng)一為V=SH/3,

  第三類:球體;

  此分類只包含球一種幾何體,

  體積公式V=4R3/3,

  其他不常用分類:圓臺、棱臺、球冠等很少接觸到。

  大多幾何體都由這些幾何體組成。

  (2)平面幾何圖形如何分類

  a.圓形

  b.多邊形:三角形(分為一般三角形,直角三角形,等腰三角形,等邊三角形)、四邊形(分為不規(guī)則四邊形,體形,平行四邊形,平行四邊形又分:矩形,菱形,正方形)、五邊形、六

  注:正方形既是矩形也是菱形

【初一數學知識點歸納】相關文章:

初一數學知識點歸納12-27

初一下數學知識點歸納01-12

【薦】初一數學知識點歸納08-02

[合集]初一數學知識點歸納07-27

數學知識點歸納03-13

初一上冊數學《統(tǒng)計》知識點歸納10-28

初一數學整式及其加減知識點歸納08-23

數學知識點歸納06-21

數學矩形知識點歸納04-25

數學復習知識點歸納07-26